Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5772, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982042

ABSTRACT

It is well established that the medial prefrontal cortex (mPFC) exerts top-down control of many behaviors, but little is known regarding how cross-talk between distinct areas of the mPFC influences top-down signaling. We performed virus-mediated tracing and functional studies in male mice, homing in on GABAergic projections whose axons are located mainly in layer 1 and that connect two areas of the mPFC, namely the prelimbic area (PrL) with the cingulate area 1 and 2 (Cg1/2). We revealed the identity of the targeted neurons that comprise two distinct types of layer 1 GABAergic interneurons, namely single-bouquet cells (SBCs) and neurogliaform cells (NGFs), and propose that this connectivity links GABAergic projection neurons with cortical canonical circuits. In vitro electrophysiological and in vivo calcium imaging studies support the notion that the GABAergic projection neurons from the PrL to the Cg1/2 exert a crucial role in regulating the activity in the target area by disinhibiting layer 5 output neurons. Finally, we demonstrated that recruitment of these projections affects impulsivity and mechanical responsiveness, behaviors which are known to be modulated by Cg1/2 activity.


Subject(s)
GABAergic Neurons , Gyrus Cinguli , Interneurons , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology , Prefrontal Cortex/cytology , Male , Gyrus Cinguli/physiology , Gyrus Cinguli/cytology , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Mice , Interneurons/physiology , Mice, Inbred C57BL , Nerve Net/physiology , Neural Pathways/physiology
2.
Neuron ; 111(19): 3068-3083.e7, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37478849

ABSTRACT

The lateral entorhinal cortex (LEC) is a major cortical input area to the hippocampus, and it is crucial for associative object-place-context memories. An unresolved question is whether these associations are performed exclusively in the hippocampus or also upstream of it. Anatomical evidence suggests that the LEC processes both object and spatial information. We describe here a gradient of spatial selectivity along the antero-posterior axis of the LEC. We demonstrate that the LEC generates distinct spatial maps for different contexts that are independent of object coding and vice versa, thus providing evidence for pure spatial and pure object codes upstream of the hippocampus. While space and object coding occur by and large separately in the LEC, we identified neurons that encode for space and objects conjunctively. Together, these findings point to a scenario in which the LEC sustains both distinct space and object coding and associative space-object coding.


Subject(s)
Entorhinal Cortex , Hippocampus , Entorhinal Cortex/physiology , Hippocampus/physiology , Neurons/physiology
3.
Cell Rep ; 39(7): 110831, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35584671

ABSTRACT

The dentate gyrus (DG) receives substantial input from the homologous brain area of the contralateral hemisphere. This input is by and large excitatory. Viral-tracing experiments provided anatomical evidence for the existence of GABAergic connectivity between the two DGs, but the function of these projections has remained elusive. Combining electrophysiological and optogenetic approaches, we demonstrate that somatostatin-expressing contralateral DG (SOM+ cDG)-projecting neurons preferentially engage dendrite-targeting interneurons over principal neurons. Single-unit recordings from freely moving mice reveal that optogenetic stimulation of SOM+ cDG projections modulates the activity of GABAergic neurons and principal neurons over multiple timescales. Importantly, we demonstrate that optogenetic silencing of SOM+ cDG projections during spatial memory encoding, but not during memory retrieval, results in compromised DG-dependent memory. Moreover, optogenetic stimulation of SOM+ cDG projections is sufficient to disrupt contextual memory recall. Collectively, our findings reveal that SOM+ long-range projections mediate inter-DG inhibition and contribute to learning and memory.


Subject(s)
GABAergic Neurons , Interneurons , Animals , Dentate Gyrus , GABAergic Neurons/physiology , Interneurons/physiology , Learning , Memory/physiology , Mice , Optogenetics
4.
Eur J Neurosci ; 54(10): 7688-7709, 2021 11.
Article in English | MEDLINE | ID: mdl-34668254

ABSTRACT

Progressive Supranuclear Palsy (PSP) is the most common atypical parkinsonism and exhibits hallmark symptomology including motor function impairment and dysexecutive dementia. In contrast to Parkinson's disease, the underlying pathology displays aggregation of the protein tau, which is also seen in disorders such as Alzheimer's disease. Currently, there are no pharmacological treatments for PSP, and drug discovery efforts are hindered by the lack of an animal model specific to PSP. Based on previous results and clinical pathology, it was hypothesized that viral deposition of tau in cholinergic neurons within the hindbrain would produce a tauopathy along neural connections to produce PSP-like symptomology and pathology. By using a combination of ChAT-CRE rats and CRE-dependent AAV vectors, wildtype human tau (the PSP-relevant 1N4R isoform; hTau) was expressed in hindbrain cholinergic neurons. Compared to control subjects (GFP), rats with tau expression displayed deficits in a variety of behavioural paradigms: acoustic startle reflex, marble burying, horizontal ladder and hindlimb motor reflex. Postmortem, the hTau rats had significantly reduced number of cholinergic pedunculopontine tegmentum and dopaminergic substantia nigra neurons, as well as abnormal tau deposits. This preclinical model has multiple points of convergence with the clinical features of PSP, some of which distinguish between PSP and Parkinson's disease.


Subject(s)
Nervous System Diseases , Supranuclear Palsy, Progressive , Animals , Cholinergic Agents , Cholinergic Neurons/metabolism , Humans , Rats , Supranuclear Palsy, Progressive/genetics , Tegmentum Mesencephali/metabolism , tau Proteins/genetics , tau Proteins/metabolism
5.
Cell Rep ; 34(9): 108801, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33657367

ABSTRACT

Septal parvalbumin-expressing (PV+) and calbindin-expressing (CB+) projections inhibit low-threshold and fast-spiking interneurons, respectively, in the medial entorhinal cortex (MEC). We investigate how the two inputs control neuronal activity in the MEC in freely moving mice. Stimulation of PV+ and CB+ terminals causes disinhibition of spatially tuned MEC neurons, but exerts differential effects on temporal coding and burst firing. Thus, recruitment of PV+ projections disrupts theta-rhythmic firing of MEC neurons, while stimulation of CB+ projections increases burst firing of grid cells and enhances phase precession in a cell-type-specific manner. Inactivation of septal PV+ or CB+ neurons differentially affects context, reference, and working memory. Together, our results reveal how specific connectivity of septal GABAergic projections with MEC interneurons translates into differential modulation of MEC neuronal coding.


Subject(s)
Action Potentials , Behavior, Animal , Entorhinal Cortex/metabolism , GABAergic Neurons/metabolism , Interneurons/metabolism , Memory, Short-Term , Neural Inhibition , Spatial Learning , Theta Rhythm , Animals , Calbindins/genetics , Calbindins/metabolism , Entorhinal Cortex/cytology , Male , Mice, Inbred C57BL , Mice, Transgenic , Neural Pathways/cytology , Neural Pathways/metabolism , Parvalbumins/genetics , Parvalbumins/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL