Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Vaccines (Basel) ; 12(3)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38543873

ABSTRACT

BACKGROUND: Shigella is a leading cause of moderate-to-severe diarrhea globally, with young children most affected. The burden of shigellosis drops increasingly with age, inferring the acquisition of natural immunity. We tested the hypothesis that IgG antibodies elicited against Shigella O-specific polysaccharide (O-SP) are correlates of age-acquired immunity. OBJECTIVES: We examined levels and determinants of serum IgG to S. sonnei LPS and the association with the incidence of S. sonnei shigellosis in Israeli children and adolescents. METHODS: We analyzed 1096 serum samples from 0- to 19-year-olds collected in 2008-2015 for IgG anti-S. sonnei LPS levels by ELISA. Corresponding age-specific incidences of culture-proven S. sonnei shigellosis from 2008 to 2015 were obtained. We compared ecologically IgG levels, prevalence above a proposed protective threshold, and S. sonnei shigellosis incidence. RESULTS: In a multivariable analysis model, children aged 1-4, 5-14, and 15-19 years were 6.71, 27.68, and 48.62 times more likely to have IgG anti-S. sonnei LPS above the threshold than those aged < 1 year, respectively (p < 0.001). Infants 0-3 months old had relatively high IgG anti-S. sonnei LPS levels of maternal origin that dropped thereafter. Children of low socioeconomic status had a 2.73 times higher likelihood of having IgG anti-S. sonnei LPS above the threshold (p < 0.001). A significant inverse correlation between age-specific IgG anti-S. sonnei LPS levels and S. sonnei shigellosis incidence was observed (Spearman rho= -0.76, p = 0.028). CONCLUSIONS: The study results support anti-S. sonnei LPS antibodies as correlates of protection that can inform Shigella vaccine development.

2.
Vaccine ; 42(7): 1445-1453, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38036392

ABSTRACT

The global public health nonprofit organization PATH hosted the third Vaccines Against Shigella and Enterotoxigenic Escherichia coli (VASE) Conference in Washington, DC, from November 29 to December 1, 2022. This international gathering focused on cutting-edge research related to the development of vaccines against neglected diarrheal pathogens including Shigella, enterotoxigenic Escherichia coli (ETEC), Campylobacter, and non-typhoidal Salmonella. In addition to the conference's plenary content, the agenda featured ten breakout workshops on topics of importance to the enteric vaccine field. This unique aspect of VASE Conferences allows focused groups of attendees to engage in in-depth discussions on subjects of interest to the enteric vaccine development community. In 2022, the workshops covered a range of topics. Two focused on the public health value of enteric vaccines, with one examining how to translate evidence into policy and the other on the value proposition of potential combination vaccines against bacterial enteric pathogens. Two more workshops explored new tools for the development and evaluation of vaccines, with the first on integrating antigen/antibody technologies for mucosal vaccine and immunoprophylactic development, and the second on adjuvants specifically for Shigella vaccines for children in low- and middle-income countries. Another pair of workshops covered the status of vaccines against two emerging enteric pathogens, Campylobacter and invasive non-typhoidal Salmonella. The remaining four workshops examined the assessment of vaccine impact on acute and long-term morbidity. These included discussions on the nature and severity of intestinal inflammation; cellular immunity and immunological memory in ETEC and Shigella infections; clinical and microbiologic endpoints for Shigella vaccine efficacy studies in children; and intricacies of protective immunity to enteric pathogens. This article provides a brief summary of the presentations and discussions at each workshop in order to share these sessions with the broader enteric vaccine field.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Vaccines , Oligopeptides , Shigella Vaccines , Shigella , Child , Humans , Diarrhea/prevention & control , Salmonella
3.
Vaccines (Basel) ; 11(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38006003

ABSTRACT

Bloodstream infections in low- and middle-income countries (LMICs) are most frequently attributed to invasive Salmonella disease caused by four primary serovars of Salmonella enterica: Typhi, Paratyphi A, Typhimurium, and Enteritidis. We showed previously that a bivalent vaccine targeting S. Typhi and S. Paratyphi A using a Multiple Antigen-Presenting System (MAPS) induced functional antibodies against S. Typhi and S. Paratyphi. In the current study, we describe the preclinical development of a first candidate quadrivalent combination Salmonella vaccine with the potential to cover all four leading invasive Salmonella serotypes. We showed that the quadrivalent Salmonella MAPS vaccine, containing Vi from S. Typhi, O-specific Polysaccharide (OSP) from S. Paratyphi A, S. Enteritidis and S. Typhimurium, combined with the Salmonella-specific protein SseB, elicits robust and functional antibody responses to each of the components of the vaccine. Our data indicates that the application of MAPS technology to the development of vaccines targeting invasive forms of Salmonella is practical and merits additional consideration.

4.
Lancet Glob Health ; 11(11): e1819-e1826, 2023 11.
Article in English | MEDLINE | ID: mdl-37858591

ABSTRACT

Shigellosis causes considerable public health burden, leading to excess deaths as well as acute and chronic consequences, particularly among children living in low-income and middle-income countries (LMICs). Several Shigella vaccine candidates are advancing in clinical trials and offer promise. Although multiple target populations might benefit from a Shigella vaccine, the primary strategic goal of WHO is to accelerate the development and accessibility of safe, effective, and affordable Shigella vaccines that reduce mortality and morbidity in children younger than 5 years living in LMICs. WHO consulted with regulators and policy makers at national, regional, and global levels to evaluate pathways that could accelerate regulatory approval in this priority population. Special consideration was given to surrogate efficacy biomarkers, the role of controlled human infection models, and the establishment of correlates of protection. A field efficacy study in children younger than 5 years in LMICs is needed to ensure introduction in this priority population.


Subject(s)
Dysentery, Bacillary , Shigella Vaccines , Child , Humans , Developing Countries , Dysentery, Bacillary/prevention & control , Dysentery, Bacillary/epidemiology
5.
Nat Commun ; 14(1): 6392, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872141

ABSTRACT

Invasive non-typhoidal Salmonella (iNTS) disease manifesting as bloodstream infection with high mortality is responsible for a huge public health burden in sub-Saharan Africa. Salmonella enterica serovar Typhimurium (S. Typhimurium) is the main cause of iNTS disease in Africa. By analysing whole genome sequence data from 1303 S. Typhimurium isolates originating from 19 African countries and isolated between 1979 and 2017, here we show a thorough scaled appraisal of the population structure of iNTS disease caused by S. Typhimurium across many of Africa's most impacted countries. At least six invasive S. Typhimurium clades have already emerged, with ST313 lineage 2 or ST313-L2 driving the current pandemic. ST313-L2 likely emerged in the Democratic Republic of Congo around 1980 and further spread in the mid 1990s. We observed plasmid-borne as well as chromosomally encoded fluoroquinolone resistance underlying emergences of extensive-drug and pan-drug resistance. Our work provides an overview of the evolution of invasive S. Typhimurium disease, and can be exploited to target control measures.


Subject(s)
Salmonella Infections , Salmonella typhimurium , Humans , Africa South of the Sahara/epidemiology , Drug Resistance, Microbial , Genomics , Salmonella Infections/epidemiology , Salmonella typhimurium/genetics
6.
Front Immunol ; 14: 1248613, 2023.
Article in English | MEDLINE | ID: mdl-37662926

ABSTRACT

Neisseria gonorrheoae is the causative agent of gonorrhea, a sexually transmitted infection responsible for a major burden of disease with a high global prevalence. Protective immunity to infection is often not observed in humans, possible due to high variability of key antigens, induction of blocking antibodies, or a large number of infections being relatively superficial and not inducing a strong immune response. N. gonorrhoeae is a strictly human pathogen, however, studies using mouse models provide useful insights into the immune response to gonorrhea. In mice, N. gonorrhoea appears to avoid a protective Th1 response by inducing a less protective Th17 response. In mouse models, candidate vaccines which provoke a Th1 response can accelerate the clearance of gonococcus from the mouse female genital tract. Human studies indicate that natural infection often induces a limited immune response, with modest antibody responses, which may correlate with the clinical severity of gonococcal disease. Studies of cytokine responses to gonococcal infection in humans provide conflicting evidence as to whether infection induces an IL-17 response. However, there is evidence for limited induction of protective immunity from a study of female sex workers in Kenya. A controlled human infection model (CHIM) has been used to examine the immune response to gonococcal infection in male volunteers, but has not to date demonstrated protection against re-infection. Correlates of protection for gonorrhea are lacking, which has hampered the progress towards developing a successful vaccine. However, the finding that the Neisseria meningitidis serogroup B vaccines, elicit cross-protection against gonorrhea has invigorated the gonococcal vaccine field. More studies of infection in humans, either natural infection or CHIM studies, are needed to understand better gonococcal protective immunity.


Subject(s)
Gonorrhea , Sex Workers , Humans , Female , Male , Animals , Mice , Neisseria gonorrhoeae , Gonorrhea/prevention & control , Vaccine Development , Cross Protection , Disease Models, Animal
7.
Wellcome Open Res ; 8: 48, 2023.
Article in English | MEDLINE | ID: mdl-37600584

ABSTRACT

Severe anaemia and invasive bacterial infections remain important causes of hospitalization and death among young African children. The emergence and spread of antimicrobial resistance demand better understanding of bacteraemia risk factors to inform prevention strategies. Epidemiological studies have reported an association between severe anaemia and bacteraemia. In this review, we explore evidence that severe anaemia is associated with increased risk of invasive bacterial infections in young children. We describe mechanisms of iron dysregulation in severe anaemia that might contribute to increased risk and pathogenesis of invasive bacteria, recent advances in knowledge of how iron deficiency and severe anaemia impair immune responses to bacterial infections and vaccines, and the gaps in our understanding of mechanisms underlying severe anaemia, iron deficiency, and the risk of invasive bacterial infections.

8.
Front Mol Biosci ; 10: 1201693, 2023.
Article in English | MEDLINE | ID: mdl-37261327

ABSTRACT

Vaccines are cost-effective tools for reducing morbidity and mortality caused by infectious diseases. The rapid evolution of pneumococcal conjugate vaccines, the introduction of tetravalent meningococcal conjugate vaccines, mass vaccination campaigns in Africa with a meningococcal A conjugate vaccine, and the recent licensure and introduction of glycoconjugates against S. Typhi underlie the continued importance of research on glycoconjugate vaccines. More innovative ways to produce carbohydrate-based vaccines have been developed over the years, including bioconjugation, Outer Membrane Vesicles (OMV) and the Multiple antigen-presenting system (MAPS). Several variables in the design of these vaccines can affect the induced immune responses. We review immunogenicity studies comparing conjugate vaccines that differ in design variables, such as saccharide chain length and conjugation chemistry, as well as carrier protein and saccharide to protein ratio. We evaluate how a better understanding of the effects of these different parameters is key to designing improved glycoconjugate vaccines.

9.
Open Forum Infect Dis ; 10(Suppl 1): S58-S66, 2023 May.
Article in English | MEDLINE | ID: mdl-37274529

ABSTRACT

There is now a robust pipeline of licensed and World Health Organization (WHO)-prequalified typhoid conjugate vaccines with a steady progression of national introductions. However, typhoid fever is responsible for less than half the total global burden of Salmonella disease, and even less among children aged <5 years. Invasive nontyphoidal Salmonella disease is the dominant clinical presentation of Salmonella in Africa, and over a quarter of enteric fever in Asia is due to paratyphoid A. In this article, we explore the case for combination Salmonella vaccines, review the current pipeline of these vaccines, and discuss key considerations for their development, including geographies of use, age of administration, and pathways to licensure. While a trivalent typhoid/nontyphoidal Salmonella vaccine is attractive for Africa, and a bivalent enteric fever vaccine for Asia, a quadrivalent vaccine covering the 4 main disease-causing serovars of Salmonella enterica would provide a single vaccine option for global Salmonella coverage.

10.
Front Immunol ; 14: 1139329, 2023.
Article in English | MEDLINE | ID: mdl-37033932

ABSTRACT

Introduction: Vaccination with Vi capsular polysaccharide (Vi-PS) or protein-Vi typhoid conjugate vaccine (TCV) can protect adults against Salmonella Typhi infections. TCVs offer better protection than Vi-PS in infants and may offer better protection in adults. Potential reasons for why TCV may be superior in adults are not fully understood. Methods and results: Here, we immunized wild-type (WT) mice and mice deficient in IgG or IgM with Vi-PS or TCVs (Vi conjugated to tetanus toxoid or CRM197) for up to seven months, with and without subsequent challenge with Vi-expressing Salmonella Typhimurium. Unexpectedly, IgM or IgG alone were similarly able to reduce bacterial burdens in tissues, and this was observed in response to conjugated or unconjugated Vi vaccines and was independent of antibody being of high affinity. Only in the longer-term after immunization (>5 months) were differences observed in tissue bacterial burdens of mice immunized with Vi-PS or TCV. These differences related to the maintenance of antibody responses at higher levels in mice boosted with TCV, with the rate of fall in IgG titres induced to Vi-PS being greater than for TCV. Discussion: Therefore, Vi-specific IgM or IgG are independently capable of protecting from infection and any superior protection from vaccination with TCV in adults may relate to responses being able to persist better rather than from differences in the antibody isotypes induced. These findings suggest that enhancing our understanding of how responses to vaccines are maintained may inform on how to maximize protection afforded by conjugate vaccines against encapsulated pathogens such as S. Typhi.


Subject(s)
Typhoid Fever , Typhoid-Paratyphoid Vaccines , Animals , Mice , Salmonella typhi , Vaccines, Conjugate , Typhoid Fever/prevention & control , Polysaccharides, Bacterial , Immunoglobulin G , Antibody Formation , Immunoglobulin M
11.
Microbiol Spectr ; 11(3): e0359422, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37036352

ABSTRACT

The autotransporter protein secretion system has been used previously to target the secretion of heterologous proteins to the bacterial cell surface and the extracellular milieu at the laboratory scale. The platform is of particular interest for the production of "difficult" recombinant proteins that might cause toxic effects when produced intracellularly. One such protein is IrmA. IrmA is a vaccine candidate that is produced in inclusion bodies requiring refolding. Here, we describe the use and scale-up of the autotransporter system for the secretion of an industrially relevant protein (IrmA). A plasmid expressing IrmA was constructed such that the autotransporter platform could secrete IrmA into the culture supernatant fraction. The autotransporter platform was suitable for the production and purification of IrmA with comparable physical properties to the protein produced in the cytoplasm. The production of IrmA was translated to scale-up protein production conditions resulting in a yield of 29.3 mg/L of IrmA from the culture supernatant, which is consistent with yields of current industrial processes. IMPORTANCE Recombinant protein production is an essential component of the biotechnology sector. Here, we show that the autotransporter platform is a viable method for the recombinant production, secretion, and purification of a "difficult" to produce protein on an industrially relevant scale. Use of the autotransporter platform could reduce the number of downstream processing operations required, thus accelerating the development time and reducing costs for recombinant protein production.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Type V Secretion Systems/genetics , Type V Secretion Systems/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Cell Membrane/metabolism
12.
Int J Infect Dis ; 129: 78-95, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36736579

ABSTRACT

OBJECTIVES: We conducted a systematic review of the longitudinal consequences of Shigella infection in children to inform the value proposition for an effective vaccine. METHODS: We searched PubMed and Embase for studies published from January 01, 1980 to December 12, 2022 and conducted in low- and middle-income countries that included longitudinal follow-up after Shigella detection among children aged <5 years, irrespective of language. We collected data on all outcomes subsequent to Shigella detection, except mortality. RESULTS: Of 2627 papers identified, 52 met inclusion criteria. The median sample size of children aged <5 years was 66 (range 5-2172). Data were collected in 20 countries; 56% (n = 29) of the publications included Bangladesh. The most common outcomes related to diarrhea (n = 20), linear growth (n = 14), and the mean total cost of a Shigella episode (n = 4; range: $ 6.22-31.10). Among children with Shigella diarrhea, 2.9-61.1% developed persistent diarrhea (≥14 days); the persistence was significantly more likely among children who were malnourished, had bloody stool, or had multidrug-resistant Shigella. Cumulative Shigella infections over the first 2 years of life contributed to the greatest loss in length-for-age z-score. CONCLUSION: We identified evidence that Shigella is associated with persistent diarrhea, linear growth faltering, and economic impact to the family.


Subject(s)
Dysentery, Bacillary , Malnutrition , Shigella , Humans , Child , Infant , Child, Preschool , Dysentery, Bacillary/epidemiology , Diarrhea/epidemiology , Bangladesh/epidemiology
13.
Heliyon ; 9(1): e12071, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36704288

ABSTRACT

Objectives: Immuno-epidemiological studies of orally acquired, enteric pathogens such as nontyphoidal Salmonella (NTS) often focus on serological measures of immunity, ignoring potentially relevant oral mucosal responses. In this study we sought to assess the levels and detectability of both oral fluid and serum IgG and IgA to NTS antigens, in endemic and non-endemic populations. Methods: IgG and IgA antibodies specific for Salmonella Typhimurium and Salmonella Enteritidis O antigen and phase 1 flagellin were assessed using Enzyme Linked Immunosorbent Assay (ELISA). Paired oral fluid and serum samples were collected from groups of 50 UK adults, Kenyan adults and Kenyan infants. Additionally, oral fluid alone was collected from 304 Kenyan individuals across a range of ages. Results: Antigen-specific IgG and IgA was detectable in the oral fluid of both adults and infants. Oral fluid antibody increased with age, peaking in adulthood for both IgG and IgA but a separate peak was also observed for IgA in infants. Oral fluid and serum responses correlated for IgG but not IgA. Despite standardised collection the relationship between oral fluid volume and antibody levels varied with age and country of origin. Conclusions: Measurement of NTS-specific oral fluid antibody can be used to complement measurement of serum antibody. For IgA in particular, oral fluid may offer insights into how protective immunity to NTS changes as individuals transition with age, from maternal to acquired systemic and mucosal immunity. This may prove useful in helping to guide future vaccine design.

14.
Clin Microbiol Infect ; 29(3): 366-371, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36243351

ABSTRACT

OBJECTIVES: Establishing a correlate of protection is essential for the development and licensure of Shigella vaccines. We examined potential threshold levels of serum IgG to Shigella lipopolysaccharide (LPS) that could predict protection against shigellosis. METHODS: We performed new analyses of serologic and vaccine efficacy (VE) data from two randomized vaccine-controlled trials of the Shigella sonnei-Pseudomonas aeruginosa recombinant exoprotein A (rEPA) conjugate conducted in young adults and children aged 1-4 years in Israel. Adults received either S. sonnei-rEPA (n = 183) or control vaccines (n = 277). Children received the S. sonnei-rEPA conjugate (n = 1384) or S. flexneri 2a-rEPA conjugate (n = 1315). VE against culture-proven shigellosis was determined. Sera were tested for IgG anti-S. sonnei LPS antibodies. We assessed the association of various levels of IgG anti-S. sonnei LPS antibodies with S. sonnei shigellosis risk using logistic regression models and the reverse cumulative distribution of IgG levels. RESULTS: Among adults, four vaccinees and 23 controls developed S. sonnei shigellosis; the VE was 74% (95% CI, 28-100%). A threshold of ≥1:1600 IgG anti-S. sonnei LPS titre was associated with a reduced risk of S. sonnei shigellosis and a predicted VE of 73.6% (95% CI, 65-80%). The IgG anti-S. sonnei LPS correlated with serum bactericidal titres. In children, a population-based level of 4.5 ELISA Units (EU) corresponding to 1:1072 titre, predicted VE of 63%, versus 71% observed VE in children aged 3-4 years. The predicted VE in children aged 2-4 years was 49%, consistent with the 52% observed VE. CONCLUSION: Serum IgG anti-S. sonnei LPS threshold levels can predict the degree of VE and can be used for the evaluation of new vaccine candidates.


Subject(s)
Dysentery, Bacillary , Shigella Vaccines , Shigella , Child , Humans , Antibodies, Bacterial , Immunoglobulin G , Lipopolysaccharides , Shigella flexneri , Shigella sonnei
15.
mBio ; 13(4): e0037422, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35862803

ABSTRACT

Salmonella enterica serovar Typhimurium causes a devastating burden of invasive disease in sub-Saharan Africa with high levels of antimicrobial resistance. No licensed vaccine is available, but O-antigen-based candidates are in development, as the O-antigen moiety of lipopolysaccharides is the principal target of protective immunity. The vaccines under development are designed based on isolates with O-antigen O-acetylated at position C-2 of abequose, giving the O:5 antigen. Serotyping data on recent Salmonella Typhimurium clinical isolates from the Democratic Republic of the Congo (DRC), however, indicate increasing levels of isolates without O:5. The importance and distribution of this loss of O:5 antigen in the population as well as the genetic mechanism responsible for the loss and chemical characteristics of the O-antigen are poorly understood. In this study, we Illumina whole-genome sequenced 354 Salmonella Typhimurium isolates from the DRC, which were isolated between 2002 and 2017. We used genomics and phylogenetics combined with chemical approaches (1H nuclear magnetic resonance [NMR], high-performance anion-exchange chromatography with pulsed amperometric detection [HPAEC-PAD], high-performance liquid chromatography-PAD [HPLC-PAD], and HPLC-size exclusion chromatography [HPLC-SEC]) to characterize the O-antigen features within the bacterial population. We observed convergent evolution toward the loss of the O:5 epitope predominantly caused by recombination events in a single gene, the O-acetyltransferase gene oafA. In addition, we observe further O-antigen variations, including O-acetylation of the rhamnose residue, different levels of glucosylation, and the absence of O-antigen repeating units. Large recombination events underlying O-antigen variation were resolved using long-read MinION sequencing. Our study suggests evolutionary pressure toward O-antigen variants in a region where invasive disease by Salmonella Typhimurium is highly endemic. This needs to be taken into account when developing O-antigen-based vaccines, as it might impact the breadth of coverage in such regions. IMPORTANCE The bacterium Salmonella Typhimurium forms a devastating burden in sub-Saharan Africa by causing invasive bloodstream infections. Additionally, Salmonella Typhimurium presents high levels of antimicrobial resistance, jeopardizing treatment. No licensed vaccine is available, but candidates are in development, with lipopolysaccharides being the principal target of protective immunity. The vaccines under development are designed based on the O:5 antigen variant of bacterial lipopolysaccharides. Data on recent Salmonella Typhimurium clinical isolates from the Democratic Republic of the Congo (DRC), however, indicate increasing levels of isolates without this O:5 antigen. We studied this loss of O:5 antigen in the population at the genetic and chemical levels. We genome sequenced 354 isolates from the DRC and used advanced bioinformatics and chemical methods to characterize the lipopolysaccharide features within the bacterial population. Our results suggest evolutionary pressure toward O-antigen variants. This needs to be taken into account when developing vaccines, as it might impact vaccine coverage.


Subject(s)
Anti-Infective Agents , Salmonella Infections , Salmonella enterica , Sepsis , Democratic Republic of the Congo/epidemiology , Humans , Lipopolysaccharides , O Antigens/genetics , Salmonella Infections/microbiology , Salmonella enterica/genetics , Salmonella typhimurium , Serogroup
16.
Vaccines (Basel) ; 10(4)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35455238

ABSTRACT

Vaccine candidates for Shigella are approaching phase 3 clinical trials in the target population of young children living in low- and middle-income countries. Key study design decisions will need to be made to maximize the success of such trials and minimize the time to licensure and implementation. We convened an ad hoc working group to identify the key aspects of trial design that would meet the regulatory requirements to achieve the desired indication of prevention of moderate or severe shigellosis due to strains included in the vaccine. The proposed primary endpoint of pivotal Shigella vaccine trials is the efficacy of the vaccine against the first episode of acute moderate or severe diarrhea caused by the Shigella strains contained within the vaccine. Moderate or severe shigellosis could be defined by a modified Vesikari score with dysentery and molecular detection of vaccine-preventable Shigella strains. This report summarizes the rationale and current data behind these considerations, which will evolve as new data become available and after further review and consultation by global regulators and policymakers.

18.
Article in English | MEDLINE | ID: mdl-34958419

ABSTRACT

Nontyphoidal Salmonella (NTS) is responsible for a major global burden of disease and economic loss, particularly in low- and middle-income countries. It is designated a priority pathogen by the WHO for vaccine development and, with new impetus from vaccine developers, the establishment of an NTS controlled human infection model (CHIM) is timely and valuable. The broadly dichotomous clinical presentations of diarrhoea and invasive disease, commonly bacteraemia, present significant challenges to the development of an NTS CHIM. Nevertheless, if successful, such a CHIM will be invaluable for understanding the pathogenesis of NTS disease, identifying correlates of protection and advancing candidate vaccines towards licensure. This article describes the background case for a CHIM for NTS, the role of such a CHIM and outlines a potential approach to its development.

19.
Vaccine ; 39(51): 7503-7509, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34794820

ABSTRACT

Serum bactericidal assays (SBA) are valuable for assessing the functional activity of natural and vaccine-induced antibodies against many Gram-negative bacteria, such as meningococcus and Salmonella. However, SBA often require an exogenous source of complement and the presence of pre-existing naturally acquired antibodies limits the use of human complement for this purpose. To remove pre-existing Salmonella-specific antibodies, in the context of SBA for Salmonella vaccine research, we incubated human sera with preparations of Salmonella. By incubating at 4 °C, pre-existing antibodies were adsorbed onto the Salmonella bacteria with only minimal complement deposition. We assessed the effects of adsorption on specific antibody levels, complement activity and the bactericidal activity of sera using flow cytometry, SBA and haemolytic assays. Adsorption removed Salmonella-specific antibodies and bactericidal activity against Salmonella from whole serum but was not detrimental to serum complement activity, even after five adsorption cycles. Bactericidal activity could be reconstituted in the adsorbed serum by the addition of exogenous specific antibodies. Sera preadsorbed with Salmonella are suitable as a source of human complement to measure the bactericidal activity of Salmonella antibodies. The adsorption method can be used to deplete, simply and rapidly, specific antibodies from serum to prepare a source of human complement for use in SBA for vaccine research and assessment.


Subject(s)
Blood Bactericidal Activity , Complement System Proteins , Adsorption , Antibodies, Bacterial , Humans , Salmonella
20.
Semin Immunol ; 50: 101433, 2020 08.
Article in English | MEDLINE | ID: mdl-33309166

ABSTRACT

Outer Membrane Vesicles (OMV) have received increased attention in recent years as a vaccine platform against bacterial pathogens. OMV from Neisseria meningitidis serogroup B have been extensively explored. Following the success of the MeNZB OMV vaccine in controlling an outbreak of N. meningitidis B in New Zealand, additional research and development resulted in the licensure of the OMV-containing four-component 4CMenB vaccine, Bexsero. This provided broader protection against multiple meningococcal B strains. Advances in the field of genetic engineering have permitted further improvements in the platform resulting in increased yields, reduced endotoxicity and decoration with homologous and heterologous antigens to enhance immuno genicity and provide broader protection. The OMV vaccine platform has been extended to many other pathogens. In this review, we discuss progress in the development of the OMV vaccine delivery platform, highlighting successful applications, together with potential challenges and gaps.


Subject(s)
Bacterial Outer Membrane/immunology , Bacterial Vaccines/immunology , Meningococcal Infections/immunology , Neisseria meningitidis/physiology , Animals , Genetic Engineering , Humans , Immunity, Heterologous , Immunogenicity, Vaccine
SELECTION OF CITATIONS
SEARCH DETAIL
...