Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 133(2): 665-672, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35476225

ABSTRACT

AIMS: Agar art bridges the gap between science and art using microbes instead of paint. Afterwards, the art can change in response to microbial fluctuation, meaning preservation of the original art is essential. Here, formaldehyde and glutaraldehyde were investigated as preservatives, involving techniques used in healthcare settings to preserve samples. METHODS AND RESULTS: Formaldehyde was tested at 1.0%, 2.0% and 3.7%, w/v, whereas glutaraldehyde was tested at 1% and 2.5%, w/v. Both compounds and respective concentrations were tested for different time periods. Escherichia coli, Serratia marcescens, Staphlococcus aureus and Micrococcus luteus were used as bacteria for "drawing" the works of art. The effectiveness of fixation was determined using integrated densities and visual assessment. Initially, both compounds showed potential promise, albeit with a loss of bacteria. Ser. marcescens was prone to colour changes and glutaraldehyde caused discolouration of agar and bacteria. These could be caused by a pH decrease in the agar, due to residual free aldehyde groups. Reduction of this was tested using 300 mM sodium metabisulfite to neutralize excess aldehydes. This initially led to reduced bacterial loss and avoided colour changes, however measurements 24 h post-fixation showed colour loss to some bacterial clusters. CONCLUSIONS: Here, at least 2% formaldehyde for a short fixation period, typically 1 min, depending on the species, was most promising for the preservation of art. Given the success of this with different bacteria, it would make a good starting combination for anyone trying to fix agar art, although methodology refinement may be needed for optimisation depending on the bacterial species used. SIGNIFICANCE AND IMPACT OF STUDY: This study shows, for the first time, successful fixation and preservation of different bacterial species on agar. The impact of this is to preserve agar art while making it safe and non-infective to those in contact with the microbial art.


Subject(s)
Aldehydes , Formaldehyde , Agar , Fixatives/pharmacology , Formaldehyde/pharmacology , Glutaral/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...