Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Turk J Chem ; 45(2): 452-462, 2021.
Article in English | MEDLINE | ID: mdl-34104056

ABSTRACT

A gas mixture representing oxy-fuel combustion conditions was employed in a thermogravimetric analyser to determine the effect of water vapor and SO2 concentration on limestone sulfation kinetics over the temperature range of 800 to 920 °C. Here, experiments used small samples of particles (4 mg), with small particle sizes (dp < 38 µm) and large gas flow rates (120 mL/min@NTP) in order to minimize mass transfer interferences. The gas mixture contained 5000 ppmv SO2, 2% O2, and the H2O content was changed from 0% to 25% with the balance CO2. When water vapor was added to the gas mixture at lower temperatures (800-870 °C), the limestone SO2 capture efficiency increased. However, as the temperature became higher, the enhancement in total conversion values decreased. As expected, Havelock limestone at higher temperatures (890 °C, 920 °C, and 950 °C) experienced indirect sulfation and reacted at a faster rate than for lower temperatures (800-870 °C) for direct sulfation over the first five minutes of reaction time. However, the total conversion of Havelock limestone for direct sulfation was generally greater than for indirect sulfation.

2.
Environ Sci Technol ; 44(22): 8781-6, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20958025

ABSTRACT

The effect of water (H2O(g)) on in situ SO2 capture using limestone injection under (FBC) conditions was studied using a thermobalance and tube furnace. The indirect sulphation reaction was found to be greatly enhanced in the presence of H2O(g). Stoichiometric conversion of samples occurred when sulphated with a synthetic flue gas containing 15% H2O(g) in under 10 h, which is equivalent to a 45% increase in conversion as compared to sulphation without H2O(g). Using gas pycnometry and nitrogen adsorption methods, it was shown that limestone samples sulphated in the presence of H2O(g) undergo increased particle densification without any significant changes to pore area or volume. The microstructural changes and observed increase in conversion were attributed to enhanced solid-state diffusion in CaO/CaSO4 in the presence of H2O(g). Given steam has been shown to have such a strong influence on sulphation, whereas it had been previously regarded as inert, may prompt a revisiting of the classically accepted sulphation models and phenomena. These findings also suggest that steam injection may be used to enhance sulfur capture performance in fluidized beds firing low-moisture fuels such as petroleum coke.


Subject(s)
Air Pollutants/chemistry , Air Pollution/prevention & control , Calcium Carbonate/chemistry , Steam , Sulfates/chemistry , Microscopy, Electron, Scanning , Power Plants , Sulfur Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL