Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 14(23): 4208-4215, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37947793

ABSTRACT

Gabapentin, a selective ligand for the α2δ subunit of voltage-dependent calcium channels, is an anticonvulsant medication used in the treatment of neuropathic pain, epilepsy, and other neurological conditions. We recently described two radiofluorinated derivatives of gabapentin (trans-4-[18F]fluorogabapentin, [18F]tGBP4F, and cis-4-[18F]fluorogabapentin, [18F]cGBP4F) and showed that these compounds accumulate in the injured nerves in a rodent model of neuropathic pain. Given the use of gabapentin in brain diseases, here we investigate whether these radiofluorinated derivatives of gabapentin can be used for imaging α2δ receptors in the brain. Specifically, we developed automated radiosynthesis methods for [18F]tGBP4F and [18F]cGBP4F and conducted dynamic PET imaging in adult rhesus macaques with and without preadministration of pharmacological doses of gabapentin. Both radiotracers showed very high metabolic stability, negligible plasma protein binding, and slow accumulation in the brain. [18F]tGBP4F, the isomer with higher binding affinity, showed low brain uptake and could not be displaced, whereas [18F]cGBP4F showed moderate brain uptake and could be partially displaced. Kinetic modeling of brain regional time-activity curves using a metabolite-corrected arterial input function shows that a one-tissue compartment model accurately fits the data. Graphical analysis using Logan or multilinear analysis 1 produced similar results as compartmental modeling, indicating robust quantification. This study advances our understanding of how gabapentinoids work and provides an important advancement toward imaging α2δ receptors in the brain.


Subject(s)
Neuralgia , Positron-Emission Tomography , Animals , Gabapentin/pharmacology , Gabapentin/metabolism , Macaca mulatta , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Neuralgia/metabolism
2.
bioRxiv ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37732236

ABSTRACT

Gabapentin, a selective ligand for the α2δ subunit of voltage-dependent calcium channels, is an anticonvulsant medication used in the treatment of neuropathic pain, epilepsy and other neurological conditions. We recently described two radiofluorinated derivatives of gabapentin (trans-4-[18F]fluorogabapentin, [18F]tGBP4F, and cis-4-[18F]fluorogabapentin, [18F]cGBP4F) and showed that these compounds accumulate in the injured nerves in a rodent model of neuropathic pain. Given the use of gabapentin in brain diseases, here we investigate whether these radiofluorinated derivatives of gabapentin can be used for imaging α2δ receptors in the brain. Specifically, we developed automated radiosynthesis methods for [18F]tGBP4F and [18F]cGBP4F and conducted dynamic PET imaging in adult rhesus macaques with and without preadministration of pharmacological doses of gabapentin. Both radiotracers showed very high metabolic stability, negligible plasma protein binding and slow accumulation in the brain. [18F]tGBP4F, the isomer with higher binding affinity, showed low brain uptake and could not be displaced whereas [18F]cGBP4F showed moderate brain uptake and could be partially displaced. Kinetic modeling of brain regional time-activity curves using a metabolite-corrected arterial input function shows that a 1-tissue compartment model accurately fits the data. Graphical analysis using Logan or multilinear analysis 1 produced similar results as compartmental modeling indicating robust quantification. This study advances our understanding of how gabapentinoids work and provides an important advancement towards imaging α2δ receptors in the brain.

3.
Eur J Nucl Med Mol Imaging ; 50(2): 344-351, 2023 01.
Article in English | MEDLINE | ID: mdl-36197499

ABSTRACT

PURPOSE: [18F]3F4AP is a novel PET radiotracer that targets voltage-gated potassium (K+) channels and has shown promise for imaging demyelinated lesions in animal models of neurological diseases. This study aimed to evaluate the biodistribution, safety, and radiation dosimetry of [18F]3F4AP in healthy human volunteers. METHODS: Four healthy volunteers (2 females) underwent a 4-h dynamic PET scan from the cranial vertex to mid-thigh using multiple bed positions after administration of 368 ± 17.9 MBq (9.94 ± 0.48 mCi) of [18F]3F4AP. Volumes of interest for relevant organs were manually drawn guided by the CT, and PET images and time-activity curves (TACs) were extracted. Radiation dosimetry was estimated from the integrated TACs using OLINDA software. Safety assessments included measuring vital signs immediately before and after the scan, monitoring for adverse events, and obtaining a comprehensive metabolic panel and electrocardiogram within 30 days before and after the scan. RESULTS: [18F]3F4AP distributed throughout the body with the highest levels of activity in the kidneys, urinary bladder, stomach, liver, spleen, and brain and with low accumulation in muscle and fat. The tracer cleared quickly from circulation and from most organs. The clearance of the tracer was noticeably faster than previously reported in nonhuman primates (NHPs). The average effective dose (ED) across all subjects was 12.1 ± 2.2 µSv/MBq, which is lower than the estimated ED from the NHP studies (21.6 ± 0.6 µSv/MBq) as well as the ED of other fluorine-18 radiotracers such as [18F]FDG (~ 20 µSv/MBq). No differences in ED between males and females were observed. No substantial changes in safety assessments or adverse events were recorded. CONCLUSION: The biodistribution and radiation dosimetry of [18F]3F4AP in humans are reported for the first time. The average total ED across four subjects was lower than most 18F-labeled PET tracers. The tracer and study procedures were well tolerated, and no adverse events occurred.


Subject(s)
Demyelinating Diseases , Radiometry , Male , Female , Animals , Humans , Tissue Distribution , Radiometry/methods , Positron-Emission Tomography/adverse effects , Positron-Emission Tomography/methods , Radiopharmaceuticals
SELECTION OF CITATIONS
SEARCH DETAIL
...