Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(7): 6216-6227, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305339

ABSTRACT

Solid-state composite electrolytes have arisen as one of the most promising materials classes for next-generation Li-ion battery technology. These composites mix ceramic and solid-polymer ion conductors with the aim of combining the advantages of each material. The ion-transport mechanisms within such materials, however, remain elusive. This knowledge gap can to a large part be attributed to difficulties in studying processes at the ceramic-polymer interface, which are expected to play a major role in the overall ion transport through the electrolyte. Computational efforts have the potential of providing significant insight into these processes. One of the main challenges to overcome is then to understand how a sufficiently robust model can be constructed in order to provide reliable results. To this end, a series of molecular dynamics simulations are here carried out with a variation of certain structural (surface termination and polymer length) and pair potential (van der Waals parameters and partial charges) models of the Li7La3Zr2O12 (LLZO) poly(ethylene oxide) (PEO) system, in order to test how sensitive the outcome is to each variation. The study shows that the static and dynamic properties of Li-ion are significantly affected by van der Waals parameters as well as the surface terminations, while the thickness of the interfacial region - where the structure-dynamic properties are different as compared to the bulk-like regime - is the same irrespective of the simulation setup.

2.
J Chem Theory Comput ; 20(1): 18-29, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38113514

ABSTRACT

We present an efficient method to compute diffusion coefficients of multiparticle systems with strong interactions directly from the geometry and topology of the potential energy field of the migrating particles. The approach is tested on Li-ion diffusion in crystalline inorganic solids, predicting Li-ion diffusion coefficients within 1 order of magnitude of molecular dynamics simulations at the same level of theory while being several orders of magnitude faster. The speed and transferability of our workflow make it well-suited for extensive and efficient screening studies of crystalline solid-state ion conductor candidates and promise to serve as a platform for diffusion prediction even up to the density functional level of theory.

3.
ACS Appl Mater Interfaces ; 13(48): 57118-57131, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34817166

ABSTRACT

Metal-organic frameworks (MOFs) are promising materials for the photocatalytic H2 evolution reaction (HER) from water. To find the optimal MOF for a photocatalytic HER, one has to consider many different factors. For example, studies have emphasized the importance of light absorption capability, optical band gap, and band alignment. However, most of these studies have been carried out on very different materials. In this work, we present a combined experimental and computation study of the photocatalytic HER performance of a set of isostructural pyrene-based MOFs (M-TBAPy, where M = Sc, Al, Ti, and In). We systematically studied the effects of changing the metal in the node on the different factors that contribute to the HER rate (e.g., optical properties, the band structure, and water adsorption). In addition, for Sc-TBAPy, we also studied the effect of changes in the crystal morphology on the photocatalytic HER rate. We used this understanding to improve the photocatalytic HER efficiency of Sc-TBAPy, to exceed the one reported for Ti-TBAPy, in the presence of a co-catalyst.

4.
Phys Chem Chem Phys ; 23(45): 25550-25557, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34781333

ABSTRACT

Both polyesters and polycarbonates have been proposed as alternatives to polyethers as host materials for future polymer electrolytes for solid-state lithium-ion batteries. While being comparatively similar functional groups, the electron density on the coordinating carbonyl oxygen is different, thereby rendering different coordinating strength towards lithium ions. In this study, the transport properties of poly(ε-caprolactone) and poly(trimethylene carbonate) as well as random copolymers of systematically varied composition of the two have been investigated, in order to better elucidate the role of the coordination strength. The cationic transference number, a property well-connected with the complexing ability of the polymer, was shown to depend almost linearly on the ester content of the copolymer, increasing from 0.49 for the pure poly(ε-caprolactone) to 0.83 for pure poly(trimethylene carbonate). Contradictory to the transference number measurements that suggest a stronger lithium-to-ester coordination, DFT calculations showed that the carbonyl oxygen in the carbonate coordinates more strongly to the lithium ion than that of the ester. FT-IR measurements showed the coordination number to be higher in the polyester system, resulting in a higher total coordination strength and thereby resolving the paradox. This likely originates in properties that are specific of polymeric solvent systems, e.g. steric properties and chain dynamics, which influence the coordination chemistry. These results highlight the complexity in polymeric systems and their ion transport properties in comparison to low-molecular-weight analogues, and how polymer structure and steric effects together affect the coordination strength and transport properties.

5.
J Chem Phys ; 150(20): 204506, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31153163

ABSTRACT

The type II clathrate hydrate (CH) THF·17 H2O (THF = tetrahydrofuran) is known to amorphize on pressurization to ∼1.3 GPa in the temperature range 77-140 K. This seems to be related to the pressure induced amorphization (PIA) of hexagonal ice to high density amorphous (HDA) ice. Here, we probe the PIA of THF-d8 · 17 D2O (TDF-CD) at 130 K by in situ thermal conductivity and neutron diffraction experiments. Both methods reveal amorphization of TDF-CD between 1.1 and 1.2 GPa and densification of the amorphous state on subsequent heating from 130 to 170 K. The densification is similar to the transition of HDA to very-high-density-amorphous ice. The first diffraction peak (FDP) of the neutron structure factor function, S(Q), of amorphous TDF-CD at 130 K appeared split. This feature is considered a general phenomenon of the crystalline to amorphous transition of CHs and reflects different length scales for D-D and D-O correlations in the water network and the cavity structure around the guest. The maximum corresponding to water-water correlations relates to the position of the FDP of HDA ice at ∼1 GPa. Upon annealing, the different length scales for water-water and water-guest correlations equalize and the FDP in the S(Q) of the annealed amorph represents a single peak. The similarity of local water structures in amorphous CHs and amorphous ices at in situ conditions is confirmed from molecular dynamics simulations. In addition, these simulations show that THF guest molecules are immobilized and retain long-range correlations as in the crystal.

6.
J Phys Chem Lett ; 10(7): 1482-1488, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30865472

ABSTRACT

The study of organic molecular crystals under high pressure provides fundamental insight into crystal packing distortions and reveals mechanisms of phase transitions and the crystallization of polymorphs. These solid-state transformations can be monitored directly by analyzing electron charge densities that are experimentally obtained at high pressure. However, restricting the analysis to the featureless electron density does not reveal the chemical bonding nature and the existence of intermolecular interactions. This shortcoming can be resolved by the use of the DORI (density overlap region indicator) descriptor, which is capable of simultaneously detecting both covalent patterns and noncovalent interactions from electron density and its derivatives. Using the biscarbonyl[14]annulene crystal under pressure as an example, we demonstrate how DORI can be exploited on experimental electron densities to reveal and monitor changes in electronic structure patterns resulting from molecular compression. A novel approach based on a flood-fill-type algorithm is proposed for analyzing the topology of the DORI isosurface. This approach avoids the arbitrary selection of DORI isovalues and provides an intuitive way to assess how compression packing affects covalent bonding in organic solids.

7.
J Chem Theory Comput ; 15(4): 2127-2141, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30811190

ABSTRACT

For large-scale screening studies there is a need to estimate the diffusion of gas molecules in nanoporous materials more efficiently than (brute force) molecular dynamics. In particular for systems with low diffusion coefficients molecular dynamics can be prohibitively expensive. An alternative is to compute the hopping rates between adsorption sites using transition state theory. For large-scale screening this requires the automatic detection of the transition states between the adsorption sites along the different diffusion paths. Here an algorithm is presented that analyzes energy grids for the moving particles. It detects the energies at which diffusion paths are formed, together with their directions. This allows for easy identification of nondiffusive systems. For diffusive systems, it partitions the grid coordinates assigned to energy basins and transitions states, permitting a transition state theory based analysis of the diffusion. We test our method on CH4 diffusion in zeolites, using a standard kinetic Monte Carlo simulation based on the output of our grid analysis. We find that it is accurate, fast, and rigorous without limitations to the geometries of the diffusion tunnels or transition states.

8.
J Chem Theory Comput ; 15(1): 382-401, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30419163

ABSTRACT

Charge equilibration (Qeq) methods can estimate the electrostatic potential of molecules and periodic frameworks by assigning point charges to each atom, using only a small fraction of the resources needed to compute density functional (DFT)-derived charges. This makes possible, for example, the computational screening of thousands of microporous structures to assess their performance for the adsorption of polar molecules. Recently, different variants of the original Qeq scheme were proposed to improve the quality of the computed point charges. One focus of this research was to improve the gas adsorption predictions in metal-organic frameworks (MOFs), for which many different structures are available. In this work, we review the evolution of the method from the original Qeq scheme, understanding the role of the different modifications on the final output. We evaluated the result of combining different protocols and set of parameters, by comparing the Qeq charges with high quality DFT-derived DDEC charges for 2338 MOF structures. We focused on the systematic errors that are attributable to specific atom types to quantify the final precision that one can expect from Qeq methods in the context of gas adsorption where the electrostatic potential plays a significant role, namely, CO2 and H2S adsorption. In conclusion, both the type of algorithm and the input parameters have a large impact on the resulting charges, and we draw some guidelines to help the user to choose the proper combination of the two for obtaining a meaningful set of charges. We show that, considering this set of MOFs, the accuracy of the original Qeq scheme is often still comparable with the most recent variants, even if it clearly fails in the presence of certain atom types, such as alkali metals.

9.
Inorg Chem ; 55(15): 7219-28, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27030923

ABSTRACT

([Sc2(OH)2(BPTC)]) (H4BPTC = biphenyl-3,3',5,5'-tetracarboxylic acid), MFM-400 (MFM = Manchester Framework Material, previously designated NOTT), and ([Sc(OH)(TDA)]) (H2TDA = thiophene-2,5-dicarboxylic acid), MFM-401, both show selective and reversible capture of CO2. In particular, MFM-400 exhibits a reasonably high CO2 uptake at low pressures and competitive CO2/N2 selectivity coupled to a moderate isosteric heat of adsorption (Qst) for CO2 (29.5 kJ mol(-1)) at zero coverage, thus affording a facile uptake-release process. Grand canonical Monte Carlo (GCMC) and density functional theory (DFT) computational analyses of CO2 uptake in both materials confirmed preferential adsorption sites consistent with the higher CO2 uptake observed experimentally for MFM-400 over MFM-401 at low pressures. For MFM-400, the Sc-OH group participates in moderate interactions with CO2 (Qst = 33.5 kJ mol(-1)), and these are complemented by weak hydrogen-bonding interactions (O···H-C = 3.10-3.22 Å) from four surrounding aromatic -CH groups. In the case of MFM-401, adsorption is provided by cooperative interactions of CO2 with the Sc-OH group and one C-H group. The binding energies obtained by DFT analysis for the adsorption sites for both materials correlate well with the observed moderate isosteric heats of adsorption for CO2. GCMC simulations for both materials confirmed higher uptake of EtOH compared with nonpolar vapors of toluene and cyclohexane. This is in good correlation with the experimental data, and DFT analysis confirmed the formation of a strong hydrogen bond between EtOH and the hydrogen atom of the hydroxyl group of the MFM-400 and MFM-401 framework (FW) with H-OEtOH···H-OFW distances of 1.77 and 1.75 Å, respectively. In addition, the accessible regeneration of MFM-400 and MFM-401 and release of CO2 potentially provide minimal economic and environmental penalties.

10.
J Chem Theory Comput ; 11(10): 4850-60, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26574273

ABSTRACT

The kinetic CO2-over-N2 sieving capabilities in narrow pore zeolites are dependent on the free-energy barriers of diffusion between the zeolite pores, which can be fine-tuned by altering the framework composition. An ab initio level of theory is necessary to accurately compute the energy barriers, whereas it is desirable to predict the macroscopic scale diffusion for industrial applications. Using ab initio molecular dynamics on the picosecond time scale, the free-energy barriers of diffusion can be predicted for different local pore properties in order to identify those that are rate-determining for the pore-to-pore diffusion. Specifically, we investigate the effects of the Na(+)-to-K(+) exchange at the different cation sites and the CO2 loading in Zeolite NaKA. These computed energy barriers are then used as input for the Kinetic Monte Carlo method, coarse graining the dynamic simulation steps to the pore-to-pore diffusion. With this approach, we simulate how the identified rate-determining properties as well as the application of skin-layer surface defects affect the diffusion driven uptake in a realistic Zeolite NaKA powder particle model on a macroscopic time scale. Lastly, we suggest a model by combining these effects, which provides an excellent agreement with the experimental CO2 and N2 uptake behaviors presented by Liu et al. (Chem. Commun. 2010, 46, 4502-4504).

11.
ACS Appl Mater Interfaces ; 7(26): 14254-62, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26061093

ABSTRACT

Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite-CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 µm thick zeolite-CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography-mass spectroscopy (GC/MS) analysis showed that the CNF-zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit.


Subject(s)
Cellulose/chemistry , Nanocomposites/chemistry , Odorants/prevention & control , Zeolites/chemistry , Colloids , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/isolation & purification , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification
12.
Langmuir ; 30(32): 9682-90, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25072512

ABSTRACT

Adsorbents with high capacity and selectivity for adsorption of CO2 are currently being investigated for applications in adsorption-driven separation of CO2 from flue gas. An adsorbent with a particularly high CO2-over-N2 selectivity and high capacity was tested here. Zeolite ZK-4 (Si:Al ∼ 1.3:1), which had the same structure as zeolite A (LTA), showed a high CO2 capacity of 4.85 mmol/g (273 K, 101 kPa) in its Na(+) form. When approximately 26 at. % of the extraframework cations were exchanged for K(+) (NaK-ZK-4), the material still adsorbed a large amount of CO2 (4.35 mmol/g, 273 K, 101 kPa), but the N2 uptake became negligible (<0.03 mmol/g, 273 K, 101 kPa). The majority of the CO2 was physisorbed on zeolite ZK-4 as quantified by consecutive volumetric adsorption measurements. The rate of physisorption of CO2 was fast, even for the highly selective sample. The molecular details of the sorption of CO2 were revealed as well. Computer modeling (Monte Carlo, molecular dynamics simulations, and quantum chemical calculations) allowed us to partly predict the behavior of fully K(+) exchanged zeolite K-ZK-4 upon adsorption of CO2 and N2 for Si:Al ratios up to 4:1. Zeolite K-ZK-4 with Si:Al ratios below 2.5:1 restricted the diffusion of CO2 and N2 across the cages. These simulations could not probe the delicate details of the molecular sieving of CO2 over N2. Still, this study indicates that zeolites NaK-ZK-4 and K-ZK-4 could be appealing adsorbents with high CO2 uptake (∼4 mmol/g, 101 kPa, 273 K) and a kinetically enhanced CO2-over-N2 selectivity.

13.
Inorg Chem ; 53(14): 7661-7, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24956023

ABSTRACT

The new oxofluoride Cu7(TeO3)6F2 has been synthesized by hydrothermal synthesis. It crystallizes in the triclinic system, space group P1. The crystal structure constitutes a Cu-O framework with channels extending along [001] where the F(-) ions and the stereochemically active lone-pairs on Te(4+) are located. From magnetic susceptibility, specific heat, and Raman scattering measurements we find evidence that the magnetic degrees of freedom of the Cu-O-Cu segments in Cu7(TeO3)6F2 lead to a mixed dimensionality with single Cu S = (1)/2 moments weakly coupled to spin-chain fragments. Due to the weaker coupling of the single moments, strong fluctuations exist at elevated temperatures, and long-range magnetic ordering evolves at comparably low temperatures (TN = 15 K).

14.
Phys Chem Chem Phys ; 16(1): 166-72, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24233447

ABSTRACT

Ab initio Molecular Dynamics (AIMD) is used with spatial constraints to estimate the free energy barriers of diffusion for CO2 and N2 gas molecules in zeolite NaA and KA. We investigate the extent to which the diffusion of these gas molecules is hindered, in the two separate cases of a smaller Na(+) ion or a larger K(+) ion blocking the 8-ring pore window. In contrast to classical Molecular Dynamics, AIMD performs these computations accurately and unbiased in the absence of empirical parameterization. Our work has resulted in stable and reliable force profiles. The profiles show that the larger K(+) ion effectively blocks the passage of both CO2 and N2 molecules while the smaller Na(+) ion will allow both molecules to pass. These results are a quantitative demonstration of the concept of pore blocking where we compute the effect, which the size of the respective cation occupying the pore window has on diffusive properties of each gas molecule. Hence, this effect can be altered through ion exchange to fine-tune the functionality of a specific zeolite as a molecular sieve.

15.
Chem Commun (Camb) ; 46(25): 4502-4, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20428579

ABSTRACT

The uptake of carbon dioxide and nitrogen gas by zeolite NaKA was studied. A very high ideal CO(2)-over-N(2) selectivity and a high CO(2) capacity were observed at an optimal K(+) content of 17 at.%. NaKA is a very promising adsorbent for CO(2) separation from water-free flue gases.


Subject(s)
Carbon Dioxide/chemistry , Nitrogen/chemistry , Potassium/chemistry , Sodium/chemistry , Zeolites/chemistry , Adsorption , Models, Molecular
16.
J Chem Phys ; 132(10): 104513, 2010 Mar 14.
Article in English | MEDLINE | ID: mdl-20232977

ABSTRACT

The first peak of the oxygen-oxygen pair-correlation function (O-O PCF) is a critical measure of the first coordination-shell distances in liquid water. Recently, a discrepancy has been uncovered between diffraction and extended x-ray absorption fine-structure (EXAFS) regarding the height and position of this peak, where EXAFS gives a considerably more well-defined peak at a shorter distance compared to the diffraction results. This discrepancy is here investigated through a novel multiple-data set structure modeling technique, SpecSwap-RMC, based on the reverse Monte Carlo (RMC) method. Fitting simultaneously to both EXAFS and a diffraction-based O-O PCF shows that even though the reported EXAFS results disagree with diffraction, the two techniques can be reconciled by taking into account a strong contribution from the photoelectron scattering focusing effect in EXAFS originating from nearly linear hydrogen bonds. This many-body contribution, which is usually neglected in RMC modeling of EXAFS data, is included in the fits by precomputing and storing EXAFS signals from real-space multiple-scattering calculations on a large number of unique water clusters. On the other hand, fitting also the O-O PCF from diffraction is seen to enhance the amount of structural disorder in the joint fit. Thus, both structures containing nearly linear hydrogen bonds and local structural disorder are important to reproduce diffraction and EXAFS simultaneously. This work also illustrates a few of many possible uses of the SpecSwap-RMC method in modeling disordered materials, particularly for fitting computationally demanding techniques and combining multiple data sets.

SELECTION OF CITATIONS
SEARCH DETAIL
...