Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
2.
Psychon Bull Rev ; 30(4): 1442-1451, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36596909

ABSTRACT

There is broad consensus supporting the reciprocal influence of working memory (WM) and attention. Top-down mechanisms operate to cope with either environmental or internal demands. In that sense, it is possible to select an item within the contents of WM to endow it with prioritized access. Although evidence supports that maintaining an item in this privileged state does not rely on sustained visual attention, it is unknown whether selection within WM depends on perceptual attention. To answer this question, we recorded electrophysiological neural activity while participants performed a retro-cue task in which we inserted a detection task in the delay period after retro-cue presentation. Critically, the onset of to-be-detected near threshold stimuli was unpredictable, and thus, sustained perceptual spatial attention was needed to accomplish the detection task from the offset of the retro-cue. At a behavioral level, we found decreased visual detection when a WM representation was retro-cued. At a neural level, alpha oscillatory activity confirmed a spatial shift of attention to the retro-cued representation. We interpret the convergence of neural oscillations and behavioral data to point towards the theory that selection within WM could be accomplished through a perceptual attentional mechanism.


Subject(s)
Cues , Memory, Short-Term , Humans , Memory, Short-Term/physiology , Consensus , Visual Perception/physiology
3.
Biol Psychol ; 173: 108400, 2022 09.
Article in English | MEDLINE | ID: mdl-35853588

ABSTRACT

It has been proposed that alpha oscillations reflect the endogenous modulation of visual cortex excitability. In particular, alpha power increases during the maintenance period in Working Memory (WM) tasks have been interpreted as a mechanism to avoid potential interference of incoming stimuli. In this study we tested whether alpha power was modulated during the maintenance of WM to enhance the processing of relevant incoming perceptual stimuli. To this aim, we manipulated the contrast of a stimulus presented during the maintenance period of a WM task. The to-be-detected stimulus could indicate which of the encoded representations was going to be probed after the delay (spatial retro-cue) or could signal that all the representations had equal probability to be tested (neutral retro-cue). Time-frequency analysis revealed that alpha power preceding retro-cue presentation was not differently modulated by the two different contrast conditions. This is, participants did not endogenously modulate alpha oscillations upon low perceptual contrast stimuli incoming. These results suggest that alpha delay activity is not a goal directed mechanism to control the inflow of information during WM maintenance. Instead, current data suggest that alpha delayed activity might be an index of increased allocation of attentional resources to the processing of the WM representations.


Subject(s)
Cues , Visual Cortex , Attention , Humans , Memory, Short-Term , Visual Perception
4.
Vision (Basel) ; 6(2)2022 May 31.
Article in English | MEDLINE | ID: mdl-35737417

ABSTRACT

Visuospatial working memory (WM) requires the activity of a spread network, including right parietal regions, to sustain storage capacity, attentional deployment, and active manipulation of information. Notably, while the electrophysiological correlates of such regions have been explored using many different indices, evidence for a functional involvement of the individual frequency peaks in the alpha (IAF) and theta bands (ITF) is still poor despite their relevance in many influential theories regarding WM. Interestingly, there is also a parallel lack of literature about the effect of short-term practice on WM performance. Here, we aim to clarify whether the simple repetition of a change-detection task might be beneficial to WM performance and to which degree these effects could be predicted by IAF and ITF. For this purpose, 25 healthy participants performed a change-detection task at baseline and in a retest session, while IAF and ITF were also measured. Results show that task repetition improves WM performance. In addition, right parietal IAF, but not ITF, accounts for performance gain such that faster IAF predicts higher performance gain. Our findings align with recent literature suggesting that the faster the posterior alpha, the finer the perceptual sampling rate, and the higher the WM performance gain.

SELECTION OF CITATIONS
SEARCH DETAIL