Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Endocrinol (Oxf) ; 89(2): 164-177, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29668062

ABSTRACT

BACKGROUND: Follow-up data on patients with 46,XY partial gonadal dysgenesis (PGD) until adulthood are scarce, making information on prognosis difficult. OBJECTIVE: To analyse the long-term outcomes of patients with 46,XY PGD regarding testosterone production, germ cell tumour risk, genotype and psychosexual adaptation. METHODS: A retrospective longitudinal study of 33 patients (20 assigned male and 13 patients assigned female at birth). Molecular diagnosis was performed by Sanger sequencing or by targeted massively parallel sequencing of 63 genes related to disorders of sex development (DSDs). RESULTS: Age at first and last visit ranged from 0.1 to 43 and from 17 to 53 years, respectively. Spontaneous puberty was observed in 57% of the patients. During follow-up, six of them had a gonadectomy (four due to female gender, and two because of a gonadal tumour). At last evaluation, five of six patients had adult male testosterone levels (median 16.7 nmol/L, range 15.3-21.7 nmol/L) and elevated LH and FSH levels. Germ cell tumours were found in two postpubertal patients (one with an abdominal gonad and one patient with Frasier syndrome). Molecular diagnosis was possible in 11 patients (33%). NR5A1 variants were the most prevalent molecular defects (n = 6), and four of five patients harbouring them developed spontaneous puberty. Gender change was observed in four patients, two from each sex assignment group; all patients reported satisfaction with their gender at final evaluation. Sexual intercourse was reported by 81% of both gender and 82% of them reported satisfaction with their sexual lives. CONCLUSION: Spontaneous puberty was observed in 57% of the patients with 46,XY PGD, being NR5A1 defects the most prevalent ones among all the patients and in those with spontaneous puberty. Gender change due to gender dysphoria was reported by 12% of the patients. All the patients reported satisfaction with their final gender, and most of them with their sexual life.

2.
J Pediatr Endocrinol Metab ; 31(2): 223-228, 2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29267169

ABSTRACT

BACKGROUND: Androgen insensitivity syndrome (AIS) is the most frequent etiology of 46,XY disorders of sex development (DSDs), and it is an X-linked disorder caused by mutations in the androgen receptor (AR) gene. AIS patients present a broad phenotypic spectrum and individuals with a partial phenotype present with different degrees of undervirilized external genitalia. There are more than 500 different AR gene allelic variants reported to be linked to AIS, but the presence of somatic mosaicisms has been rarely identified. In the presence of a wild-type AR gene, a significant degree of spontaneous virilization at puberty can be observed, and it could influence the gender assignment, genetic counseling and the clinical and psychological management of these patients and the psychosexual outcomes of these patients are not known. CASE PRESENTATION: In this study, we report two patients with AR allelic variants in heterozygous (c.382G>T and c.1769-1G>C) causing a partial AIS (PAIS) phenotype. The first patient was raised as female and she had undergone a gonadectomy at puberty. In both patients there was congruency between gender of rearing and gender identity and gender role. CONCLUSIONS: Somatic mosaicism is rare in AIS and nonsense AR variant allelic can cause partial AIS phenotype in this situation. Despite the risk of virilization and prenatal androgen exposure, the gender identity and gender role was concordant with sex of rearing in both cases. A better testosterone response can be expected in male individuals and this should be considered in the clinical management.


Subject(s)
Androgen-Insensitivity Syndrome/genetics , Codon, Nonsense , Mosaicism , Receptors, Androgen/genetics , Adult , Androgen-Insensitivity Syndrome/physiopathology , Androgen-Insensitivity Syndrome/psychology , Androgen-Insensitivity Syndrome/surgery , Brazil , Castration , Computational Biology , Expert Systems , Female , Gender Identity , Humans , Male , Severity of Illness Index
3.
Birth Defects Res C Embryo Today ; 108(4): 309-320, 2016 12.
Article in English | MEDLINE | ID: mdl-28033660

ABSTRACT

Steroidogenic factor 1 (NR5A1, SF-1, Ad4BP) is a transcriptional regulator of genes involved in adrenal and gonadal development and function. Mutations in NR5A1 have been among the most frequently identified genetic causes of gonadal development disorders and are associated with a wide phenotypic spectrum. In 46,XY individuals, NR5A1-related phenotypes may range from disorders of sex development (DSD) to oligo/azoospermia, and in 46,XX individuals, from 46,XX ovotesticular and testicular DSD to primary ovarian insufficiency (POI). The most common 46,XY phenotype is atypical or female external genitalia with clitoromegaly, palpable gonads, and absence of Müllerian derivatives. Notably, an undervirilized external genitalia is frequently seen at birth, while spontaneous virilization may occur later, at puberty. In 46,XX individuals, NR5A1 mutations are a rare genetic cause of POI, manifesting as primary or secondary amenorrhea, infertility, hypoestrogenism, and elevated gonadotropin levels. Mothers and sisters of 46,XY DSD patients carrying heterozygous NR5A1 mutations may develop POI, and therefore require appropriate counseling. Moreover, the recurrent heterozygous p.Arg92Trp NR5A1 mutation is associated with variable degrees of testis development in 46,XX patients. A clear genotype-phenotype correlation is not seen in patients bearing NR5A1 mutations, suggesting that genetic modifiers, such as pathogenic variants in other testis/ovarian-determining genes, may contribute to the phenotypic expression. Here, we review the published literature on NR5A1-related disease, and discuss our findings at a single tertiary center in Brazil, including ten novel NR5A1 mutations identified in 46,XY DSD patients. The ever-expanding phenotypic range associated with NR5A1 variants in XY and XX individuals confirms its pivotal role in reproductive biology, and should alert clinicians to the possibility of NR5A1 defects in a variety of phenotypes presenting with gonadal dysfunction. Birth Defects Research (Part C) 108:309-320, 2016. © 2016 The Authors Birth Defects Research Part C: Embryo Today: Reviews Published by Wiley Periodicals, Inc.


Subject(s)
Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/physiology , Adolescent , Adrenal Insufficiency , Adult , Brazil , Child , Child, Preschool , Disorders of Sex Development/genetics , Disorders of Sex Development/metabolism , Female , Gonadal Disorders/genetics , Gonadal Disorders/metabolism , Humans , Infant , Male , Mutation , Phenotype , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/metabolism , Steroidogenic Factor 1/metabolism
4.
Eur J Med Genet ; 55(12): 690-4, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22939835

ABSTRACT

Despite advances in our understanding of the mechanisms involved in sex determination and differentiation, the specific roles of many genes in these processes are not completely understood in humans. Both DMRT1 and FGF9 are among this group of genes. Dmrt1 controls germ cell differentiation, proliferation, migration and pluripotency and Sertoli cell proliferation and differentiation. Fgf9 has been considered a critical factor in early testicular development and germ cell survival in mice. We screened for the presence of DMRT1 and FGF9 mutations in 33 patients with 46,XY gonadal dysgenesis. No deletions in either DMRT1 or FGF9 were identified using the MLPA technique. Eight allelic variants of DMRT1 were identified, and in silico analysis suggested that the novel c.968-15insTTCTCTCT variant and the c.774G>C (rs146975077) variant could have potentially deleterious effects on the DMRT1 protein. Nine previously described FGF9 allelic variants and six different alleles of the 3' UTR microsatellite were identified. However, none of these DMRT1 or FGF9 variants was associated with increased 46,XY gonadal dysgenesis. In conclusion, our study suggests that neither DMRT1 nor FGF9 abnormalities are frequently involved in dysgenetic male gonad development in patients with non-syndromic 46,XY disorder of sex development.


Subject(s)
Fibroblast Growth Factor 9/genetics , Gonadal Dysgenesis, 46,XY/genetics , Transcription Factors/genetics , 3' Untranslated Regions , Alleles , Base Sequence , Gene Dosage , Humans , Male , Mutation , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...