Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mycol Med ; 34(2): 101475, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479291

ABSTRACT

Malassezia pachydermatis is often reported as the causative agent of dermatitis in dogs. This study aims to evaluate the in vitro and in vivo antifungal activity of azoles and terbinafine (TRB), alone and in combination with the 8-hydroxyquinoline derivatives (8-HQs) clioquinol (CQL), 8-hydroxyquinoline-5-(n-4-chlorophenyl)sulfonamide (PH151), and 8-hydroxyquinoline-5-(n-4-methoxyphenyl)sulfonamide (PH153), against 16 M. pachydermatis isolates. Susceptibility to the drugs was evaluated by in vitro broth microdilution and time-kill assays. The Toll-deficient Drosophila melanogaster fly model was used to assess the efficacy of drugs in vivo. In vitro tests showed that ketoconazole (KTZ) was the most active drug, followed by TRB and CQL. The combinations itraconazole (ITZ)+CQL and ITZ+PH151 resulted in the highest percentages of synergism and none of the combinations resulted in antagonism. TRB showed the highest survival rates after seven days of treatment of the flies, followed by CQL and ITZ, whereas the evaluation of fungal burden of dead flies showed a greater fungicidal effect of azoles when compared to the other drugs. Here we showed for the first time that CQL is effective against M. pachydermatis and potentially interesting for the treatment of malasseziosis.


Subject(s)
Antifungal Agents , Azoles , Dermatomycoses , Drosophila melanogaster , Malassezia , Microbial Sensitivity Tests , Animals , Antifungal Agents/pharmacology , Malassezia/drug effects , Malassezia/growth & development , Azoles/pharmacology , Dermatomycoses/drug therapy , Dermatomycoses/microbiology , Drosophila melanogaster/microbiology , Drosophila melanogaster/drug effects , Dogs , Terbinafine/pharmacology , Drug Synergism , Drug Therapy, Combination , Dog Diseases/microbiology , Dog Diseases/drug therapy , Ketoconazole/pharmacology , Oxyquinoline/pharmacology , Sulfonamides/pharmacology , Itraconazole/pharmacology , Clioquinol/pharmacology , Disease Models, Animal
2.
An Acad Bras Cienc ; 92(suppl 1): e20181379, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32756842

ABSTRACT

The formation of microbial biofilms in materials used in the industrial production of dairy may lead to deterioration of these foods. Yarrowia lipolytica biofilms are widely found in dairy products and can modify the final characteristics of these products. Thus, this study investigated the effectiveness of hygienization by detergents and sodium hypochlorite on the formation of Y. lipolytica biofilms in different utensils usually employed during industrial cheese production, like polypropylene, hoses, and nylon/polyethylene. The utensils were sanitized using solutions of mild and alkaline detergents, and sodium hypochlorite, according to the cheese industry Standard Operation Procedure. Results showed that in all coupons there was biofilm formation with Y. lipolytica isolates. The contact angle measurements were favored to promote the adhesion of the biofilm in the evaluated surfaces. Even after treatment with sanitizers, a significant survival rate of planktonic cells was observed in all coupons tested. These results indicate that Y. lipolytica biofilms show a significant ability to adhere to polypropylene, presenting an important impact on the quality of colonial cheese.


Subject(s)
Cheese , Yarrowia , Biofilms , Detergents , Sodium Hypochlorite
SELECTION OF CITATIONS
SEARCH DETAIL
...