Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38161085

ABSTRACT

OBJECTIVE: This retrospective study analyzed the errors generated by a convolutional neural network (CNN) when performing automated classification of oral lesions according to their clinical characteristics, seeking to identify patterns in systemic errors in the intermediate layers of the CNN. STUDY DESIGN: A cross-sectional analysis nested in a previous trial in which automated classification by a CNN model of elementary lesions from clinical images of oral lesions was performed. The resulting CNN classification errors formed the dataset for this study. A total of 116 real outputs were identified that diverged from the estimated outputs, representing 7.6% of the total images analyzed by the CNN. RESULTS: The discrepancies between the real and estimated outputs were associated with problems relating to image sharpness, resolution, and focus; human errors; and the impact of data augmentation. CONCLUSIONS: From qualitative analysis of errors in the process of automated classification of clinical images, it was possible to confirm the impact of image quality, as well as identify the strong impact of the data augmentation process. Knowledge of the factors that models evaluate to make decisions can increase confidence in the high classification potential of CNNs.


Subject(s)
Neural Networks, Computer , Humans , Cross-Sectional Studies , Retrospective Studies
2.
Article in English | MEDLINE | ID: mdl-36900902

ABSTRACT

OBJECTIVES: Artificial intelligence has generated a significant impact in the health field. The aim of this study was to perform the training and validation of a convolutional neural network (CNN)-based model to automatically classify six clinical representation categories of oral lesion images. METHOD: The CNN model was developed with the objective of automatically classifying the images into six categories of elementary lesions: (1) papule/nodule; (2) macule/spot; (3) vesicle/bullous; (4) erosion; (5) ulcer and (6) plaque. We selected four architectures and using our dataset we decided to test the following architectures: ResNet-50, VGG16, InceptionV3 and Xception. We used the confusion matrix as the main metric for the CNN evaluation and discussion. RESULTS: A total of 5069 images of oral mucosa lesions were used. The oral elementary lesions classification reached the best result using an architecture based on InceptionV3. After hyperparameter optimization, we reached more than 71% correct predictions in all six lesion classes. The classification achieved an average accuracy of 95.09% in our dataset. CONCLUSIONS: We reported the development of an artificial intelligence model for the automated classification of elementary lesions from oral clinical images, achieving satisfactory performance. Future directions include the study of including trained layers to establish patterns of characteristics that determine benign, potentially malignant and malignant lesions.


Subject(s)
Artificial Intelligence , Neural Networks, Computer
3.
J Digit Imaging ; 36(3): 1060-1070, 2023 06.
Article in English | MEDLINE | ID: mdl-36650299

ABSTRACT

Artificial neural networks (ANN) are artificial intelligence (AI) techniques used in the automated recognition and classification of pathological changes from clinical images in areas such as ophthalmology, dermatology, and oral medicine. The combination of enterprise imaging and AI is gaining notoriety for its potential benefits in healthcare areas such as cardiology, dermatology, ophthalmology, pathology, physiatry, radiation oncology, radiology, and endoscopic. The present study aimed to analyze, through a systematic literature review, the application of performance of ANN and deep learning in the recognition and automated classification of lesions from clinical images, when comparing to the human performance. The PRISMA 2020 approach (Preferred Reporting Items for Systematic Reviews and Meta-analyses) was used by searching four databases of studies that reference the use of IA to define the diagnosis of lesions in ophthalmology, dermatology, and oral medicine areas. A quantitative and qualitative analyses of the articles that met the inclusion criteria were performed. The search yielded the inclusion of 60 studies. It was found that the interest in the topic has increased, especially in the last 3 years. We observed that the performance of IA models is promising, with high accuracy, sensitivity, and specificity, most of them had outcomes equivalent to human comparators. The reproducibility of the performance of models in real-life practice has been reported as a critical point. Study designs and results have been progressively improved. IA resources have the potential to contribute to several areas of health. In the coming years, it is likely to be incorporated into everyday life, contributing to the precision and reducing the time required by the diagnostic process.


Subject(s)
Dermatology , Ophthalmology , Humans , Artificial Intelligence , Reproducibility of Results , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...