Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
An Acad Bras Cienc ; 96(2): e20231208, 2024.
Article in English | MEDLINE | ID: mdl-38747841

ABSTRACT

The enterotoxigenic Escherichia coli (ETEC) strain is one of the most frequent causative agents of childhood diarrhea and travelers' diarrhea in low-and middle-income countries. Among the virulence factors secreted by ETEC, the exoprotein EtpA has been described as an important. In the present study, a new detection tool for enterotoxigenic E. coli bacteria using the EtpA protein was developed. Initially, antigenic sequences of the EtpA protein were selected via in silico prediction. A chimeric recombinant protein, corresponding to the selected regions, was expressed in an E. coli host, purified and used for the immunization of mice. The specific recognition of anti-EtpA IgG antibodies generated was evaluated using flow cytometry. The tests demonstrated that the antibodiesdeveloped were able to recognize the native EtpA protein. By coupling these antibodies to magnetic beads for the capture and detection of ETEC isolates, cytometric analyses showed an increase in sensitivity, specificity and the effectiveness of the method of separation and detection of these pathogens. This is the first report of the use of this methodology for ETEC separation. Future trials may indicate their potential use for isolating these and other pathogens in clinical samples, thus accelerating the diagnosis and treatment of diseases.


Subject(s)
Antibodies, Bacterial , Enterotoxigenic Escherichia coli , Escherichia coli Proteins , Flow Cytometry , Enterotoxigenic Escherichia coli/immunology , Animals , Mice , Flow Cytometry/methods , Escherichia coli Proteins/immunology , Antibodies, Bacterial/immunology , Sensitivity and Specificity , Mice, Inbred BALB C , Female , Immunoglobulin G/immunology
2.
Diagn Microbiol Infect Dis ; 109(3): 116338, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718661

ABSTRACT

The diagnosis if leprosy is difficult, as it requires clinical expertise and sensitive laboratory tests. In this study, we develop a serological test for leprosy by using bioinformatics tools to identify specific B-cell epitopes from Mycobacterium leprae hypothetical proteins, which were used to construct a recombinant chimeric protein, M1. The synthetic peptides were obtained and showed good reactivity to detect leprosy patients, although the M1 chimera have showed sensitivity (Se) and specificity (Sp) values higher than 90.0% to diagnose both paucibacillary (PB) and multibacillary (MB) leprosy patients, but not those developing tegumentary or visceral leishmaniasis, tuberculosis, Chagas disease, malaria, histoplasmosis and aspergillosis, in ELISA experiments. Using sera from household contacts, values for Se and Sp were 100% and 65.3%, respectively. In conclusion, our proof-of-concept study has generated data that suggest that a new recombinant protein could be developed into a diagnostic antigen for leprosy.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Epitopes, B-Lymphocyte , Leprosy , Mycobacterium leprae , Sensitivity and Specificity , Humans , Mycobacterium leprae/immunology , Mycobacterium leprae/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Leprosy/diagnosis , Leprosy/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Enzyme-Linked Immunosorbent Assay/methods , Adult , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Male , Female , Serologic Tests/methods , Computational Biology/methods , Middle Aged , Young Adult , Adolescent
3.
Tuberculosis (Edinb) ; 147: 102505, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583359

ABSTRACT

Leprosy diagnosis is difficult due to the clinical similarity with other infectious diseases, and laboratory tests presents problems related to sensitivity and/or specificity. In this study, we used bioinformatics to assess Mycobacterium leprae proteins and formulated a chimeric protein that was tested as a diagnostic marker for the disease. The amino acid sequences from ML0008, ML0126, ML0308, ML1057, ML2028, ML2038, ML2498 proteins were evaluated, and the B-cell epitopes QASVAYPATSYADFRAHNHWWNGP, SLQRSISPNSYNTARVDP and QLLGQTADVAGAAKSGPVQPMGDRGSVSPVGQ were considered M. leprae-specific and used to construct the gene encoding the recombinant antigen. The gene was constructed, the recombinant protein was expressed, purified and tested in ELISA using 252 sera, which contained samples from multibacillary (MB) or paucibacillary (PB) leprosy patients, from their household contacts and healthy individuals, as well as from patients with Chagas disease, visceral and tegumentary leishmaniases (VL/TL), malaria, tuberculosis, and HIV. Sensitivity (Se) and specificity (Sp) for MB and PB samples compared to sera from both healthy subjects and individuals with cross-reactive diseases were 100%. The Se value for MB and PB samples compared to sera from household contacts was 100%, but Sp was 64%. In conclusion, data suggest that this protein could be considered in future studies for leprosy diagnosis.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Enzyme-Linked Immunosorbent Assay , Epitopes, B-Lymphocyte , Leprosy, Multibacillary , Leprosy, Paucibacillary , Mycobacterium leprae , Serologic Tests , Mycobacterium leprae/immunology , Mycobacterium leprae/genetics , Humans , Epitopes, B-Lymphocyte/immunology , Serologic Tests/methods , Enzyme-Linked Immunosorbent Assay/methods , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Leprosy, Paucibacillary/diagnosis , Leprosy, Paucibacillary/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Leprosy, Multibacillary/diagnosis , Leprosy, Multibacillary/immunology , Antibodies, Bacterial/blood , Recombinant Fusion Proteins/immunology , Predictive Value of Tests , Female , Male , Sensitivity and Specificity , Recombinant Proteins/immunology , Recombinant Proteins/genetics
4.
Viruses ; 15(9)2023 09 05.
Article in English | MEDLINE | ID: mdl-37766284

ABSTRACT

The impact of the COVID-19 pandemic caused by the SARS-CoV-2 virus underscored the crucial role of laboratorial tests as a strategy to control the disease, mainly to indicate the presence of specific antibodies in human samples from infected patients. Therefore, suitable recombinant antigens are relevant for the development of reliable tests, and so far, single recombinant proteins have been used. In this context, B-cell epitopes-based chimeric proteins can be an alternative to obtain tests with high accuracy through easier and cheaper production. The present study used bioinformatics tools to select specific B-cell epitopes from the spike (S) and the nucleocapsid (N) proteins from the SARS-CoV-2 virus, aiming to produce a novel recombinant chimeric antigen (N4S11-SC2). Eleven S and four N-derived B-cell epitopes were predicted and used to construct the N4S11-SC2 protein, which was analyzed in a recombinant format against serum and urine samples, by means of an in house-ELISA. Specific antibodies were detected in the serum and urine samples of COVID-19 patients, which were previously confirmed by qRT-PCR. Results showed that N4S11-SC2 presented 83.7% sensitivity and 100% specificity when using sera samples, and 91.1% sensitivity and 100% specificity using urine samples. Comparable findings were achieved with paired urine samples when compared to N and S recombinant proteins expressed in prokaryotic systems. However, better results were reached for N4S11-SC2 in comparison to the S recombinant protein when using paired serum samples. Anti-N4S11-SC2 antibodies were not clearly identified in Janssen Ad26.COV2.S COVID-19-vaccinated subjects, using serum or paired urine samples. In conclusion, this study presents a new chimeric recombinant antigen expressed in a prokaryotic system that could be considered as an alternative diagnostic marker for the SARS-CoV-2 infection, with the potential benefits to be used on serum or urine from infected patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Epitopes, B-Lymphocyte , Ad26COVS1 , Pandemics , COVID-19/diagnosis , Recombinant Proteins/genetics , Recombinant Fusion Proteins/genetics
5.
Basic Clin Pharmacol Toxicol ; 132(6): 473-485, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36882317

ABSTRACT

This study aimed to investigate the effect of intranasal treatment of gold nanoparticles (GNPs) and Curcumin (Cur) on the lipopolysaccharide (LPS)-induced acute pulmonary inflammatory response. A single intraperitoneal injection of LPS (0.5 mg/Kg) was performed, and the animals in the Sham group were injected with 0.9% saline. Treatment was daily intranasally with GNPs (2.5 mg/L), Cur (10 mg/kg) and GNP-Cur started 12 h after LPS administration and ended on the seventh day. The results show that the treatment performed with GNP-Cur was the most effective to attenuate the action of pro-inflammatory cytokines, and a lower leukocyte count in the bronchoalveolar lavage, in addition to positively regulating anti-inflammatory cytokines in relation to other groups. As a result, it promoted an oxirreductive balanced environment in the lung tissue, providing a histological outcome with a reduction in inflammatory cells and greater alveolar area. The group treated with GNPs-Cur was superior to the other groups, with better anti-inflammatory activity and reduced oxidative stress, resulting in less morphological damage to lung tissue. In conclusion, the use of reduced GNPs with curcumin demonstrates promising effects in the control of the acute inflammatory response, helping to protect the lung tissue at the biochemical and morphological levels.


Subject(s)
Curcumin , Metal Nanoparticles , Pneumonia , Rats , Animals , Lipopolysaccharides/toxicity , Rats, Wistar , Gold/pharmacology , Curcumin/pharmacology , Pneumonia/chemically induced , Pneumonia/drug therapy , Pneumonia/prevention & control , Lung/pathology , Cytokines , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Anti-Inflammatory Agents/pharmacology
6.
Antioxidants (Basel) ; 11(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36421443

ABSTRACT

This study aimed to investigate the effects of iontophoresis and hyaluronic acid (HA) combined with a gold nanoparticle (GNP) solution in an excisional wound model. Fifty Wistar rats (n = 10/group) were randomly assigned to the following groups: excisional wound (EW); EW + MC; EW + MC + HA; EW + MC + GNPs; and EW + MC + HA + GNPs. The animals were induced to a circular excision, and treatment started 24 h after injury with microcurrents (300 µA) containing gel with HA (0.9%) and/or GNPs (30 mg/L) in the electrodes (1 mL) for 7 days. The animals were euthanized 12 h after the last treatment application. The results demonstrate a reduction in the levels of pro-inflammatory cytokines (IFNϒ, IL-1ß, TNFα, and IL-6) in the group in which the therapies were combined, and they show increased levels of anti-inflammatory cytokines (IL-4 and IL-10) and growth factors (FGF and TGF-ß) in the EW + MC + HA and EW + MC + HA + GNPs groups. As for the levels of dichlorofluorescein (DCF) and nitrite, as well as oxidative damage (carbonyl and sulfhydryl), they decreased in the combined therapy group when compared to the control group. Regarding antioxidant defense, there was an increase in glutathione (GSH) and a decrease in superoxide dismutase (SOD) in the combined therapy group. A histological analysis showed reduced inflammatory infiltrate in the MC-treated groups and in the combination therapy group. There was an increase in the wound contraction rate in all treated groups when compared to the control group, proving that the proposed therapies are effective in the epithelial healing process. The results of this study demonstrate that the therapies in combination favor the tissue repair process more significantly than the therapies in isolation.

7.
Vaccines (Basel) ; 10(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35891310

ABSTRACT

Currently, there is no licensed vaccine to protect against human visceral leishmaniasis (VL), a potentially fatal disease caused by infection with Leishmania parasites. In the current study, a recombinant chimeric protein ChimT was developed based on T-cell epitopes identified from the immunogenic Leishmania amastigote proteins LiHyp1, LiHyV, LiHyC and LiHyG. ChimT was associated with the adjuvants saponin (Sap) or monophosphoryl lipid A (MPLA) and used to immunize mice, and their immunogenicity and protective efficacy were evaluated. Both ChimT/Sap and ChimT/MPLA induced the development of a specific Th1-type immune response, with significantly high levels of IFN-γ, IL-2, IL-12, TNF-α and GM-CSF cytokines produced by CD4+ and CD8+ T cell subtypes (p < 0.05), with correspondingly low production of anti-leishmanial IL-4 and IL-10 cytokines. Significantly increased (p < 0.05) levels of nitrite, a proxy for nitric oxide, and IFN-γ expression (p < 0.05) were detected in stimulated spleen cell cultures from immunized and infected mice, as was significant production of parasite-specific IgG2a isotype antibodies. Significant reductions in the parasite load in the internal organs of the immunized and infected mice (p < 0.05) were quantified with a limiting dilution technique and quantitative PCR and correlated with the immunological findings. ChimT/MPLA showed marginally superior immunogenicity than ChimT/Sap, and although this was not statistically significant (p > 0.05), ChimT/MPLA was preferred since ChimT/Sap induced transient edema in the inoculation site. ChimT also induced high IFN-γ and low IL-10 levels from human PBMCs isolated from healthy individuals and from VL-treated patients. In conclusion, the experimental T-cell multi-epitope amastigote stage Leishmania vaccine administered with adjuvants appears to be a promising vaccine candidate to protect against VL.

8.
Microb Pathog ; 167: 105562, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35513293

ABSTRACT

The diagnosis of leishmaniasis presents problems due to the variable sensitivity and/or specificity of tests. In addition, high levels of anti-parasite antibodies can remain after treatment, making it difficult to conduct a prognostic follow-up of patients. In this context, it is necessary to identify new candidates to be examined for the sensitive and specific diagnosis of the disease. In the present study, four Leishmania proteins, previously shown as antigenic for tegumentary leishmaniasis (TL), were evaluated, and their linear specific B-cell epitopes were predicted and used to generate a new gene codifying chimeric protein called ChimB, which was cloned, and the recombinant version was expressed, purified, and evaluated in ELISA (Enzyme-Linked Immunosorbent Assay) to diagnose TL and visceral leishmaniasis (VL). A total of 220 human serum samples were used, and, when ChimB was used, results showed sensitivity, specificity, and positive and negative predictive values of 100% for the diagnosis of both diseases; however, when using peptides, the sensitivity values reached from 28.0% to 57.3% and specificity varied from 16.3% to 83.7%. A soluble Leishmania extract (SLA) showed sensitivity and specificity values of 30.7% and 45.9%, respectively. The area under the curve (AUC) value for ChimB was 1.0, while for synthetic peptides, this value reached between 0.502 and 0.635, whereas for SLA, the value was of 0.589. Serological assays using sera samples collected before and after treatment showed significant reductions in the anti-ChimB antibody levels after therapy, suggesting a prognostic role of this recombinant antigen. In conclusion, preliminary data suggest the use from ChimB as a potential candidate for the diagnosis and prognosis of leishmaniasis.


Subject(s)
Leishmania , Leishmaniasis, Visceral , Leishmaniasis , Animals , Antibodies, Protozoan , Antigens, Protozoan/genetics , Enzyme-Linked Immunosorbent Assay/methods , Epitopes, B-Lymphocyte/genetics , Humans , Leishmaniasis/diagnosis , Leishmaniasis, Visceral/diagnosis , Peptides , Recombinant Fusion Proteins/genetics , Sensitivity and Specificity , Serologic Tests/methods
9.
Microb Pathog ; 162: 105341, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34883228

ABSTRACT

Serological tests used for the diagnosis of tegumentary leishmaniasis (TL) presents problems, mainly related to their variable sensitivity and/or specificity, which can be caused by low levels of antileishmanial antibodies or by presence of cross-reactive diseases, respectively. In this context, the search for new antigenic candidates presenting higher sensitivity and specificity is urgently required. In the present study, the amino acid sequences of the LiHyT, LiHyD, LiHyV, and LiHyP proteins, which were previously showed to be antigenic in the visceral leishmaniasis (VL), were evaluated and eight B-cell epitopes were predicted and used for construction of gene codifying a chimeric protein called ChimLeish. The protein was expressed, purified and evaluated as a recombinant antigen in ELISA (Enzyme-Linked Immunosorbent Assay) for the diagnosis of TL. The own B cell epitopes used to construct the chimera were synthetized and also evaluated as antigens, as well as a soluble Leishmania braziliensis antigenic extract (SLA). Results showed that ChimLeish presented 100% sensitivity and specificity to diagnose TL, while synthetic peptides showed sensitivity varying from 9.1% to 90.9%, while specificity reached from 98.3% to 99.1%. SLA showed sensitivity and specificity of 18.2% and 98.3%, respectively. A preliminary prognostic evaluation showed that anti-ChimLeish IgG antibodies declined in significant levels, when serological reactivity was compared before and six months after treatment, suggesting also a possible prognostic role of this antigen for TL.


Subject(s)
Leishmania , Leishmaniasis , Antibodies, Protozoan , Antigens, Protozoan/genetics , Enzyme-Linked Immunosorbent Assay , Epitopes, B-Lymphocyte/genetics , Humans , Leishmania/genetics , Recombinant Fusion Proteins/genetics , Sensitivity and Specificity , Serologic Tests
10.
Parasitol Res ; 120(12): 4037-4047, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34664113

ABSTRACT

Visceral leishmaniasis (VL) is a neglected tropical disease of global importance caused by parasites of the genus Leishmania, and coinfection with human immunodeficiency virus (HIV) is common in countries where both diseases are endemic. In particular, widely used immunological tests for VL diagnosis have impaired sensitivity (Se) and specificity (Sp) in VL/HIV coinfected patients and there is also cross-reactivity with other endemic diseases, e.g., Chagas disease, malaria, and tuberculosis. To develop new antigens to improve the diagnosis of VL and VL/HIV coinfection, we predicted eight specific B-cell epitopes of four Leishmania infantum antigens and constructed a recombinant polypeptide chimera antigen called ChimLeish. A serological panel of 195 serum samples was used to compare the diagnostic capabilities of ChimLeish alongside the individual synthetic peptides. ChimLeish reacted with sera from all VL and VL/HIV coinfected patients [Se = 100%; Sp = 100%; area under the curve (AUC) = 1.0]. Peptides showed lower reactivities (Se = 76.8 to 99.2%; Sp = 67.1 to 95.7%; AUC between 0.87 and 0.98) as did a L. infantum antigenic preparation used as an antigen control (Se = 56.8%; Sp = 69.5%: AUC = 0.45). Notably, ChimLeish demonstrated a significant reduction (p < 0.05) of anti-ChimLeish antibodies after treatment and cure of a small number of patients. Although only a limited serological panel was tested, preliminary data suggest that ChimLeish should be evaluated in larger sample studies for the diagnosis of VL and VL/HIV coinfection.


Subject(s)
Coinfection , HIV Infections , Leishmania infantum , Leishmaniasis, Visceral , Antigens, Protozoan/genetics , Coinfection/diagnosis , HIV/genetics , HIV Infections/complications , Humans , Leishmaniasis, Visceral/diagnosis , Prognosis , Recombinant Fusion Proteins
11.
Vet Parasitol ; 296: 109513, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34225189

ABSTRACT

Visceral leishmaniasis (VL) is an important public health problem in the world, and control measures are insufficient to avoid the spread of this neglected disease. Dogs are important domestic reservoirs of Leishmania parasites in countries where VL is a zoonosis, representing a major source of infection between sand fly vectors and humans. In this context, a precise diagnosis of canine leishmaniasis (CanL) could help to reduce the number of human cases. Distinct approaches for the diagnosis of CanL have used recombinant proteins in serological assays. However, variable results of the antigens have been found, mainly to diagnosis asymptomatic cases. The present study used bioinformatics to select specific B-cell epitopes of four Leishmania infantum proteins, which had previously been proven to be antigenic in VL, aiming to produce a novel chimeric protein and to evaluate it for the diagnosis of CanL. Seven B-cell epitopes were identified and used to construct the chimera, which was analyzed in a recombinant format through an ELISA assay against a canine serological panel. A soluble Leishmania antigenic extract (SLA) was used as an antigen control. Results showed 100 % sensitivity and specificity for chimera, while when using SLA the values were 26.0 % and 96.4 %, respectively. The performance of chimera was compared with a commercial kit using asymptomatic and symptomatic dog sera, and the data showed that no false-negative result was found when the recombinant protein was used. However, when using the commercial kit, 40.0 % and 16.0 % of the false-negative results were found, respectively. In conclusion, the recombinant chimera showed an antigenic potential to be evaluated in new studies against a larger serological panel for the diagnosis of CanL.


Subject(s)
Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Animals , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Dog Diseases/diagnosis , Dogs , Enzyme-Linked Immunosorbent Assay/veterinary , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Leishmania infantum/genetics , Leishmania infantum/immunology , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Recombinant Fusion Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sensitivity and Specificity , Serologic Tests/veterinary
12.
Int J Biol Macromol ; 187: 66-75, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34246677

ABSTRACT

Loxoscelism is the most dangerous araneism form in Brazil and antivenom therapy is the recommended treatment. Antivenom is produced by horse immunization with Loxosceles spider venom, which is toxic for the producer animal. Moreover, due to the high amount of venom required for horse hyperimmunization, new strategies for antigens obtention have been proposed. In this sense, our research group has previously produced a non-toxic recombinant multiepitopic protein derived from Loxosceles toxins (rMEPLox). rMEPLox was a successful immunogen, being able to induce the production of neutralizing antibodies, which could be used in the Loxoscelism treatment. However, rMEPLox obtention procedure requires optimization, as its production needs to be scaled up to suit antivenom manufacture. Therefore, an effective protocol development for rMEPlox production would be advantageous. To achieve this objective, we evaluated the influence of different cultivation conditions for rMEPLox optimum expression. The optimum conditions to obtain large amounts of rMEPlox were defined as the use of C43(DE3)pLysS as a host strain, 2xTY medium, 0.6 mM IPTG, biomass pre induction of OD600nm = 0.4 and incubation at 30 °C for 16 h. Following the optimized protocol, 39.84 mg/L of soluble rMEPLox was obtained and tested as immunogen. The results show that the obtained rMEPLox preserved the previously described immunogenicity, and it was able to generate antibodies that recognize different epitopes of the main Loxosceles venom toxins, which makes it a promising candidate for the antivenom production for loxoscelism treatment.


Subject(s)
Escherichia coli , Gene Expression , Spiders/genetics , Animals , Antivenins/biosynthesis , Antivenins/genetics , Antivenins/immunology , Antivenins/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Mice, Inbred BALB C , Phosphoric Diester Hydrolases/biosynthesis , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/immunology , Phosphoric Diester Hydrolases/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Spider Venoms/biosynthesis , Spider Venoms/genetics , Spider Venoms/immunology , Spider Venoms/isolation & purification
13.
NPJ Vaccines ; 5: 75, 2020.
Article in English | MEDLINE | ID: mdl-32821440

ABSTRACT

Leishmaniases are neglected diseases caused by infection with Leishmania parasites and there are currently no prophylactic vaccines. In this study, we designed in silico a synthetic recombinant vaccine against visceral leishmaniasis (VL) called ChimeraT, which contains specific T-cell epitopes from Leishmania Prohibitin, Eukaryotic Initiation Factor 5a and the hypothetical LiHyp1 and LiHyp2 proteins. Subcutaneous delivery of ChimeraT plus saponin stimulated a Th1 cell-mediated immune response and protected mice against L. infantum infection, significantly reducing the parasite load in distinct organs. ChimeraT/saponin vaccine stimulated significantly higher levels of IFN-γ, IL-12, and GM-CSF cytokines by both murine CD4+ and CD8+ T cells, with correspondingly low levels of IL-4 and IL-10. Induced antibodies were predominantly IgG2a isotype and homologous antigen-stimulated spleen cells produced significant nitrite as a proxy for nitric oxide. ChimeraT also induced lymphoproliferative responses in peripheral blood mononuclear cells from VL patients after treatment and healthy subjects, as well as higher IFN-γ and lower IL-10 secretion into cell supernatants. Thus, ChimeraT associated with a Th1 adjuvant could be considered as a potential vaccine candidate to protect against human disease.

14.
Int J Biol Macromol ; 164: 1112-1123, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32702423

ABSTRACT

Loxoscelism is a recognized public health problem in Brazil, but the venom from Loxosceles similis, which is widespread in Brazil due to its adaptability to the urban environment, remains poorly characterized. Loxtox is a family of phospholipase D enzymes (PLDs), which are the major components of Loxosceles venom and are responsible for the clinical effects of loxoscelism. Loxtox toxins correspond to 15% of L. similis venom gland transcripts, but the Loxtox family of L. similis has yet to be fully described. In this study, we cloned and functionally characterized recLoxtox s1A and recLoxtox s11A. These recombinant toxins exhibited different in vitro activities depending on pH, and recLoxtox s1A had more intense effects on rabbit skin than did recLoxtox s11A in vivo. Both recombinant toxins were used in immunization protocols, and mapping of their epitopes revealed different immunological reactions for the produced immune serums. Additionally, polyclonal antibodies raised against recLoxtox s1A had greater capacity to significantly reduce the in vitro and in vivo effects of L. similis venom. In summary, we obtained and characterized two novel Loxtox isoforms from L. similis venom, which may be valuable biotechnological and immunological tools against loxoscelism.


Subject(s)
Phosphoric Diester Hydrolases/metabolism , Spider Venoms/metabolism , Spiders/metabolism , Animals , Cloning, Molecular , Epitopes/chemistry , Female , Hydrogen-Ion Concentration , Immune Sera/immunology , Neutralization Tests , Phospholipase D/metabolism , Phosphoric Diester Hydrolases/genetics , Protein Isoforms , Rabbits , Recombinant Proteins/metabolism , Skin/drug effects , Sphingomyelin Phosphodiesterase/metabolism , Spider Venoms/genetics
15.
Exp Parasitol ; 216: 107941, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32622940

ABSTRACT

Distinct antigens have been evaluated with diagnostic purpose for canine and human visceral leishmaniasis (VL), and variable sensitivity and specificity values have been obtained in the assays. In the present study, a Leishmania infantum hypothetical protein called LiHyG, which was identified in an immunoproteomics study in Leishmania infantum amastigote extracts by antibodies in VL dogs sera; was cloned, expressed, purified and evaluated as a recombinant protein (rLiHyG) for the diagnosis of canine and human disease. The recombinant amastigote-specific A2 protein (rA2) and a soluble L. infantum protein extract (SLA) were used as controls. For canine VL, the sensitivity values were of 100%, 57.29% and 48.57%, when rLiHyG, rA2 and SLA were used, respectively, while the specificity values were of 100%, 81.43% and 88.57%, respectively. In addition, AUC values were of 1.00, 0.72 and 0.65, when rLiHyG, rA2 and SLA were used, respectively, while accuracy was of 100%, 72.38% and 75.24%, respectively. For human VL, the sensitivity values were of 100%, 84.00% and 88.00%, when rLiHyG, rA2 and SLA were used, respectively, while the specificity values were of 100%, 58.75% and 73.75%, respectively. In addition, AUC values were of 1.00, 0.76 and 0.83, when rLiHyG, rA2 and SLA were used, respectively, while accuracy was of 100%, 64.8% and 66.6%, respectively. The prognostic role of rLiHyG in the human VL was also evaluated, by means of post-therapeutic serological follow-up with sera samples collected before and six months after treatment. Results showed that treated patients presented significant reductions in the anti-rLiHyG IgG, IgG1, and IgG2 antibody levels, with results being similar to those found in healthy subjects. Testing the rA2 protein and SLA as antigens, lower IgG, IgG1, and IgG2 levels were also found, although they were higher after treatment than those obtained for rLiHyG. In conclusion, results suggested that rLiHyG could be considered for future studies as a diagnostic and/or prognostic marker for canine and human VL.


Subject(s)
Antigens, Protozoan/isolation & purification , Dog Diseases/parasitology , Leishmania infantum/immunology , Leishmaniasis, Visceral/diagnosis , Adult , Aged , Amino Acid Sequence , Animals , Antigens, Protozoan/genetics , Bone Marrow/parasitology , Computational Biology , DNA, Protozoan/chemistry , DNA, Protozoan/isolation & purification , Dog Diseases/diagnosis , Dogs , Enzyme-Linked Immunosorbent Assay , Epitopes, B-Lymphocyte/chemistry , Female , Humans , Immunoglobulin G/blood , Leishmania infantum/genetics , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/veterinary , Male , Middle Aged , Prognosis , Protozoan Proteins/chemistry , Sensitivity and Specificity , Sequence Alignment , Serologic Tests , Spleen/parasitology , Young Adult
16.
Microb Pathog ; 147: 104283, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32485231

ABSTRACT

The treatment against visceral leishmaniasis (VL) presents problems, mainly related to the toxicity and/or high cost of the drugs. In this context, a rapid and precise diagnosis of the disease should be performed, mainly to treat patients as soon as possible, aiming to reduce the treatment time and the toxicity of the therapeutics. In the present study, the diagnostic role of an amastigote-specific Leishmania protein was evaluated in the canine and human VL. Results showed that the recombinant protein (called rLiHyJ) and one specific B cell epitope (called PeptJ) predicted from protein sequence presented high sensitivity and specificity values to diagnose canine and human disease, showing also a low reactivity against cross-reactive samples. The rA2 protein and a parasite antigenic extract showed variable sensitivity and/or specificity values in the ELISA experiments. A prognostic evaluation of protein and peptide in the human VL indicated that specific IgG antibodies significantly decreased after treatment, when compared to be values obtained before therapy. The in vitro immunogenicity using rLiHyJ in peripheral blood mononuclear cell (PBMC) cultures collected of such patients and healthy subjects suggested that the protein induced lymphoproliferation and high IFN-γ production in the stimulated cells. In conclusion, although preliminary, results suggest that rLiHyJ and PeptJ could present distinct biotechnological applications in the canine and human VL.


Subject(s)
Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Animals , Antigens, Protozoan , Dog Diseases/diagnosis , Dogs , Epitopes, B-Lymphocyte , Humans , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Leukocytes, Mononuclear
17.
Int J Biol Macromol ; 162: 490-500, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32574737

ABSTRACT

Loxoscelism pose a health issue in the South America. The treatment for these accidents is based on the administration of antivenom produced in animals immunized with Loxosceles venom. In this work, a previously produced non-toxic multiepitopic chimeric protein (rMEPlox), composed of epitopes derived from the main toxins families (sphyngomielinase-D, metalloproteases, and hyaluronidases) of Loxosceles spider venoms, was used as antigen to produce monoclonal antibodies (mAbs). A selected anti-rMEPlox mAb (Lox-mAb3) reacted with metalloprotease from L. intermedia venom and showed cross-reactivity with metalloproteses from Brazilian and Peruvian Loxosceles laeta and Loxosceles gaucho venoms in immunoassays. The sequence recognized by Lox-mAb3 (184ENNTRTIGPFDYDSIMLYGAY205) corresponds to the C-terminal region of Astacin-like metalloprotease 1 and the amino acid sequence IGPFDYDSI, conserved among the homologs metalloproteases sequences, is important for antibody recognition. Lox-mAb3 neutralizes the fibrinogenolytic activity caused by metalloprotease from L. intermedia spider venom in vitro, which may lead to a decrease in hemorrhagic disturbances caused by Loxosceles envenomation. Our results show, for the first time, the use of a non-toxic multiepitopic protein for the production of a neutralizing monoclonal antibody against a metalloprotease of medically important Loxosceles venoms. These results contribute for the production improvement of therapeutic antivenom against loxoscelism.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Neutralizing/immunology , Arthropod Proteins , Epitopes , Metalloendopeptidases , Phosphoric Diester Hydrolases , Spider Venoms , Spiders , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Female , Metalloendopeptidases/chemistry , Metalloendopeptidases/genetics , Metalloendopeptidases/immunology , Mice , Mice, Inbred BALB C , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/immunology , Protein Engineering , Spider Venoms/chemistry , Spider Venoms/genetics , Spider Venoms/immunology
18.
Vaccines (Basel) ; 8(2)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32526867

ABSTRACT

Background: Leishmaniases are neglected diseases caused by infection with Leishmania parasites and there are no human vaccines in use routinely. The purpose of this study was to examine the immunogenicity of ChimeraT, a novel synthetic recombinant vaccine against visceral leishmaniasis (VL), incorporated into a human-compatible liposome formulation. Methods: BALB/c mice were immunized subcutaneously with ChimeraT/liposome vaccine, ChimeraT/saponin adjuvant, or ChimeraT/saline and immune responses examined in vitro and in vivo. Results: Immunization with the ChimeraT/liposome formulation induced a polarized Th1-type response and significant protection against L. infantum infection. ChimeraT/liposome vaccine stimulated significantly high levels of interferon (IFN)-γ, interleukin (IL)-12, and granulocyte macrophage-colony stimulating factor (GM-CSF) cytokines by both CD4 and CD8 T-cells, with correspondingly lower levels of IL-4 and IL-10 cytokines. Induced antibodies were predominantly IgG2a isotype, and homologous antigen-stimulated spleen cells produced significant nitrite as a proxy for nitric oxide (NO). Furthermore, we examined a small number of treated VL patients and found higher levels of circulating anti-ChimeraT protein IgG2 antibodies, compared to IgG1 levels. Conclusions: Overall, the liposomal formulation of ChimeraT induced a protective Th1-type immune response and thus could be considered in future studies as a vaccine candidate against human VL.

19.
Parasitol Res ; 119(8): 2609-2622, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32535734

ABSTRACT

The treatment against visceral leishmaniasis (VL) presents problems, mainly related to the toxicity and/or high cost of the drugs. In this context, a prophylactic vaccination is urgently required. In the present study, a Leishmania protein called LiHyE, which was suggested recently as an antigenic marker for canine and human VL, was evaluated regarding its immunogenicity and protective efficacy in BALB/c mice against Leishmania infantum infection. In addition, the protein was used to stimulate peripheral blood mononuclear cells (PBMCs) from VL patients before and after treatment, as well as from healthy subjects. Vaccination results showed that the recombinant (rLiHyE) protein associated with liposome or saponin induced effective protection in the mice, since significant reductions in the parasite load in spleen, liver, draining lymph nodes, and bone marrow were found. The parasitological protection was associated with Th1-type cell response, since high IFN-γ, IL-12, and GM-CSF levels, in addition to low IL-4 and IL-10 production, were found. Liposome induced a better parasitological and immunological protection than did saponin. Experiments using PBMCs showed rLiHyE-stimulated lymphoproliferation in treated patients' and healthy subjects' cells, as well as high IFN-γ levels in the cell supernatant. In conclusion, rLiHyE could be considered for future studies as a vaccine candidate against VL.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens, Protozoan/administration & dosage , Leishmania infantum/immunology , Leishmaniasis, Visceral/prevention & control , Animals , Antigens, Protozoan/immunology , Female , Humans , Immunogenicity, Vaccine , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Leukocytes, Mononuclear/immunology , Mice , Mice, Inbred BALB C , Parasite Load , Th1 Cells/immunology , Vaccination
20.
Int J Biol Macromol ; 161: 299-307, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32464201

ABSTRACT

Snakebites caused by Crotalus genus are the second most frequent in Brazil. Crotoxin is a beta-neurotoxin responsible for the main envenomation effects of Crotalus biting, while crotamine immobilizes the animal hind limbs, contributing to prey immobilization and to envenoming symptoms. As crotoxin and crotamine represent about 90% of Crotalus venom dry weight, these toxins are of great importance for antivenom therapy. In this sense, knowledge regarding the antigenicity/immunogenicity at the molecular level of these toxins can provide valuable information for the improvement of specific antivenoms. Therefore, the aims of this study are the identification of the B-cell epitopes from crotoxin and crotamine; and the characterization of the neutralizing potency of antibodies directed against the corresponding synthetic epitopes defined in the current study. Linear B-cell epitopes were identified using the Spot Synthesis technique probed with specific anti-C. d. terrificus venom horse IgG. One epitope of crotamine (F12PKEKICLPPSSDFGKMDCRW32) and three of crotoxin (L10LVGVEGHLLQFNKMIKFETR30; Y43CGWGGRGRPKDATDRCCFVH63 and T118YKYGYMFYPDSRCRGPSETC138) were identified. After synthesis in their soluble form, the peptides mixture correspondent to the mapped epitopes was entrapped in liposomes and used as immunogens for antibody production in rabbits. Anti-synthetic peptide antibodies were able to protect mice from the lethal activity of C. d. terrificus venom.


Subject(s)
Crotalus/immunology , Epitopes/immunology , Liposomes , Snake Venoms/immunology , Amino Acid Sequence , Anaphylaxis/immunology , Anaphylaxis/prevention & control , Animals , Antivenins/administration & dosage , Antivenins/immunology , Crotoxin/chemistry , Crotoxin/immunology , Disease Models, Animal , Epitope Mapping , Epitopes/administration & dosage , Epitopes/chemistry , Female , Immunoglobulin G/immunology , Mice , Models, Molecular , Neutralization Tests , Peptides/chemistry , Peptides/immunology , Protein Conformation , Rabbits , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...