Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(6): 1867-1873, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38306119

ABSTRACT

Few-layer graphene possesses low-energy carriers that behave as massive Fermions, exhibiting intriguing properties in both transport and light scattering experiments. Lowering the excitation energy of resonance Raman spectroscopy down to 1.17 eV, we target these massive quasiparticles in the split bands close to the K point. The low excitation energy weakens some of the Raman processes that are resonant in the visible, and induces a clearer frequency-separation of the substructures of the resonance 2D peak in bi- and trilayer samples. We follow the excitation-energy dependence of the intensity of each substructure, and comparing experimental measurements on bilayer graphene with ab initio theoretical calculations, we trace back such modifications on the joint effects of probing the electronic dispersion close to the band splitting and enhancement of electron-phonon matrix elements.

2.
Phys Rev Lett ; 130(25): 256901, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37418733

ABSTRACT

We report on resonance Raman spectroscopy measurements with excitation photon energy down to 1.16 eV on graphene, to study how low-energy carriers interact with lattice vibrations. Thanks to the excitation energy close to the Dirac point at K, we unveil a giant increase of the intensity ratio between the double-resonant 2D and 2D^{'} peaks with respect to that measured in graphite. Comparing with fully ab initio theoretical calculations, we conclude that the observation is explained by an enhanced, momentum-dependent coupling between electrons and Brillouin zone-boundary optical phonons. This finding applies to two-dimensional Dirac systems and has important consequences for the modeling of transport in graphene devices operating at room temperature.


Subject(s)
Graphite , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Graphite/chemistry , Phonons , Vibration , Electrons
3.
Phys Rev Lett ; 129(18): 185902, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36374700

ABSTRACT

We study the effect of doping on the electron-phonon interaction and on the phonon frequencies in doped semiconductors, taking into account the screening in the presence of free carriers at finite temperature. We study the impact of screening on the Fröhlich-like vertex and on the long-range components of the dynamical matrix, going beyond the state-of-the-art description for undoped crystals, thanks to the development of a computational method based on maximally localized Wannier functions. We apply our approach to cubic silicon carbide, where in the presence of doping the Fröhlich coupling and the longitudinal-transverse phonon splitting are strongly reduced, thereby influencing observable properties such as the electronic lifetime.

4.
Nano Lett ; 20(12): 8861-8865, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33226824

ABSTRACT

The Hall scattering factor, r, is a key quantity for establishing carrier concentration and drift mobility from Hall measurements; in experiments, it is usually assumed to be 1. In this paper, we use a combination of analytical and ab initio modeling to determine r in graphene. Although at high carrier densities r ≈ 1 in a wide temperature range, at low doping the temperature dependence of r is very strong with values as high as 4 below 300 K. These high values are due to the linear bands around the Dirac cone and the carrier scattering rates due to acoustic phonons. At higher temperatures, r can instead become as low as 0.5 due to the contribution of both holes and electrons and the role of optical phonons. Finally, we provide a simple analytical model to compute accurately r in graphene in a wide range of temperatures and carrier densities.

SELECTION OF CITATIONS
SEARCH DETAIL