Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 286(Pt 3): 131948, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34426277

ABSTRACT

Bee health is declining on a global scale, yet the exact causes and their interactions responsible for the decline remain unknown. To more objectively study bee health, recently biomarkers have been proposed as an essential tool, because they can be rapidly quantified and standardized, serving as a comparable measure across bee species and varying environments. Here, we used a systems biology approach to draw associations between endogenous and exogenous chemical profiles, with pesticide exposure, or the abundance of the 21 most common honey bee diseases. From the analysis we identified chemical biomarkers for both pesticide exposure and bee diseases along with the mechanistic biological pathways that may influence disease onset and progression. We found a total of 2352 chemical features, from 30 different hives, sampled from seven different locations. Of these, a total of 1088 significant associations were found that could serve as chemical biomarker profiles for predicting both pesticide exposure and the presence of diseases in a bee colony. In almost all cases we found novel external environmental exposures within the top seven associations with bee diseases and pesticide exposures, with the majority having previously unknown connections to bee health. We highlight the exposure-outcome paradigm and its ability to identify previously uncategorized interactions from different environmental exposures associated with bee diseases, pesticides, mechanisms, and potential synergistic interactions of these that are responsible for honey bee health decline.


Subject(s)
Environmental Exposure , Pesticides , Animals , Bees , Biomarkers , Pesticides/analysis , Pesticides/toxicity
2.
R Soc Open Sci ; 8(4): 210194, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-34007462

ABSTRACT

Use of chemicals, such as alarm pheromones, for rapid communication with conspecifics is widespread throughout evolutionary history. Such chemicals are particularly important for social insects, such as the honeybee (Apis mellifera), because they are used for collective decision-making, coordinating activities and self-organization of the group. What is less understood is how these pheromones change due to an infection and what the implications might be for social communication. We used semiquantitative polymerase chain reaction (sqPCR) to screen for a common microsporidian gut parasite, Nosema ceranae, for 30 hives, across 10 different locations. We then used high-resolution accurate mass gas chromatography-quadrupole time of flight mass spectrometry to generate an exposome profile for each hive. Of the 2352 chemical features identified, chemicals associated with infection were filtered for cosanes or cosenes. A significant association was found between N. ceranae and the presence of (Z)-11-eicosen-1-ol, a known alarm pheromone component. The increase in (Z)-11-eicosen-1-ol could be the recognition mechanism for healthy individuals to care for, kill, or quarantine infected nestmates. Nosema ceranae has contributed to the global decline in bee health. Therefore, altered alarm pheromones might play a role in disrupting social harmony and have potential impacts on colony health.

4.
Vet Sci ; 7(3)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640622

ABSTRACT

The recent decline of European honey bees (Apis mellifera) has prompted a surge in research into their chemical environment, including chemicals produced by bees, as well as chemicals produced by plants and derived from human activity that bees also interact with. This study sought to develop a novel approach to passively sampling honey bee hives using silicone wristbands. Wristbands placed in hives for 24 h captured various compounds, including long-chain hydrocarbons, fatty acids, fatty alcohols, sugars, and sterols with wide ranging octanol-water partition coefficients (Kow) that varied by up to 19 orders of magnitude. Most of the compounds identified from the wristbands are known to be produced by bees or plants. This study indicates that silicone wristbands provide a simple, affordable, and passive method for sampling the chemical environment of honey bees.

5.
Environ Sci Technol ; 53(23): 13906-13918, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31746186

ABSTRACT

Persistent organic pollutants (POPs), such as dichlorodiphenyltrichloroethane (DDT) and other organochlorine compounds, are abundant in the environment and in foodstuffs from the Indian subcontinent. These environmental contaminants have been associated with a higher risk of diabetes in numerous studies. Asian Indians are well known to have a high risk of diabetes compared with other populations, and this risk is also found in migrant populations of Asian Indians in the United States, Europe, and elsewhere. We hypothesized that high plasma concentrations of POPs in Asian Indian migrants are linked to a variety of diabetes-related pathologies and explored the mechanism for the induction of these effects. We measured 30 environmental pollutants in plasma samples obtained from 147 participants in the Metabolic syndrome and Atherosclerosis in South Asians Living in America pilot study using a gas chromatography-tandem mass spectrometry analytical method that uses less than 0.5 mL of plasma. We found that plasma levels of o,p'-DDT and p,p'-DDT were independently associated with both body mass index (BMI) and waist circumference. Doubling the levels of the sums of these DDTs was associated with insulin insensitivity (-0.38 Matsuda index, p = 0.001), increased adiposity (1.26 kg/m2 BMI and 3.58 cm waist circumference increase, p < 0.0001), circulating insulin (12.9 mIU/L, p = 0.002), hepatic fat (-0.051 HU, p = 0.001), as well as increased odds of obesity (OR = 2.17, p < 0.001, BMI-based; OR = 2.37, p = 0.001, waist-based), prediabetes (OR = 1.55, p = 0.02), diabetes (OR = 1.72, p = 0.01), and fatty liver (OR = 1.66, p = 0.01) in multivariable models accounting for confounding by age, sex, years in the US, education, and fish protein. Furthermore, levels of DDTs were associated with increased hepatic fat and circulating insulin, independent of obesity and confounders. These findings suggest that exposure to DDTs may contribute to the risk of metabolic disease among Asian Indians by affecting hepatic fat levels independent of obesity.


Subject(s)
Emigrants and Immigrants , Environmental Pollutants , Animals , Europe , Gas Chromatography-Mass Spectrometry , Humans , Pilot Projects , United States
7.
PLoS One ; 14(3): e0213249, 2019.
Article in English | MEDLINE | ID: mdl-30845162

ABSTRACT

Honey bee (Apis mellifera) health has been severely impacted by multiple environmental stressors including parasitic infection, pesticide exposure, and poor nutrition. The decline in bee health is therefore a complex multifactorial problem which requires a holistic investigative approach. Within the exposome paradigm, the combined exposure to the environment, drugs, food, and individuals' internal biochemistry affects health in positive and negative ways. In the context of the exposome, honey bee hive infection with parasites such as Nosema ceranae is also a form of environmental exposure. In this study, we hypothesized that exposure to xenobiotic pesticides and other environmental chemicals increases susceptibility to N. ceranae infection upon incidental exposure to the parasite. We further queried whether these exposures could be linked to changes in conserved metabolic biological pathways. From 30 hives sampled across 10 sites, a total of 2,352 chemical features were found via gas chromatography-time of flight mass spectrometry (GC-TOF) in extracts of honey bees collected from each hive. Of these, 20 pesticides were identified and annotated, and found to be significantly associated with N. ceranae infection. We further determined that infected hives were linked to a greater number of xenobiotic exposures, and the relative concentration of the exposures were not linked to the presence of a N. ceranae infection. In the exposome profiles of the bees, we also found chemicals inherent to known biological metabolic pathways of Apis mellifera and identified 9 dysregulated pathways. These findings have led us to posit that for hives exposed to similar chemicals, those that incur multiple, simultaneous xenobiotic stressors have a greater incidence of infection with N. ceranae. Mechanistically, our results suggests the overwhelming nature of these exposures negatively affects the biological functioning of the bee, and could explain how the decline in bee populations is associated with pesticide exposures.


Subject(s)
Bees/metabolism , Biomarkers/metabolism , Environmental Exposure/adverse effects , Metabolic Networks and Pathways/drug effects , Nosema/drug effects , Xenobiotics/toxicity , Animals , Bees/drug effects , Bees/microbiology , Host-Pathogen Interactions , Metabolome , Nosema/physiology
8.
J Endocr Soc ; 2(8): 832-841, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30019022

ABSTRACT

OBJECTIVE: Rates of diabetes mellitus are higher in South Asians than in other populations and persist after migration. One unexplored cause may be higher exposure to persistent organic pollutants associated with diabetes in other populations. We compared organochlorine (OC) pesticide concentrations in South Asian immigrants and European whites to determine whether the disease was positively associated with OC pesticides in South Asians. RESEARCH DESIGN AND METHODS: South Asians of Tamil or Telugu descent (n = 120) and European whites (n = 72) were recruited into the London Life Sciences Population Study cohort. Blood samples as well as biometric, clinical, and survey data were collected. Plasma levels of p,p'-dichlorodiphenyldichloroethylene (DDE), p,p'- dichlorodiphenyltrichloroethane, ß-hexachlorohexane (HCH), and polychlorinated biphenyl-118 were analyzed by gas chromatography-mass spectrometry. South Asian cases and controls were categorized by binary exposure (above vs below the 50th percentile) to perform logistic regression. RESULTS: Tamils had approximately threefold to ninefold higher levels of OC pesticides, and Telugus had ninefold to 30-fold higher levels compared with European whites. The odds of exposure to p,p'-DDE above the 50th percentile was significantly greater in South Asian diabetes cases than in controls (OR: 7.00; 95% CI: 2.22, 22.06). The odds of exposure to ß-HCH above the 50th percentile was significantly greater in the Tamil cases than in controls (OR: 9.35; 95% CI: 2.43, 35.97). CONCLUSIONS: South Asian immigrants have a higher body burden of OC pesticides than European whites. Diabetes mellitus is associated with higher p,p'-DDE and ß-HCH concentrations in this population. Additional longitudinal studies of South Asian populations should be performed.

9.
Anal Biochem ; 421(2): 573-81, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22239963

ABSTRACT

We describe here a gas chromatography-tandem mass spectrometry (GC/MS/MS) method for the sensitive and concurrent determination of extracellular tryptophan and the kynurenine pathway metabolites kynurenine, 3-hydroxykynurenine (3-HK), and quinolinic acid (QUIN) in rat brain. This metabolic cascade is increasingly linked to the pathophysiology of several neurological and psychiatric diseases. Methodological refinements, including optimization of MS conditions and the addition of deuterated standards, resulted in assay linearity to the low nanomolar range. Measured in samples obtained by striatal microdialysis in vivo, basal levels of tryptophan, kynurenine, and QUIN were 415, 89, and 8 nM, respectively, but 3-HK levels were below the limit of detection (<2 nM). Systemic injection of kynurenine (100 mg/kg, i.p.) did not affect extracellular tryptophan but produced detectable levels of extracellular 3-HK (peak after 2-3 h: ~50 nM) and raised extracellular QUIN levels (peak after 2h: ~105 nM). The effect of this treatment on QUIN, but not on 3-HK, was potentiated in the N-methyl-D-aspartate (NMDA)-lesioned striatum. Our results indicate that the novel methodology, which allowed the measurement of extracellular kynurenine and 3-HK in the brain in vivo, will facilitate studies of brain kynurenines and of the interplay between peripheral and central kynurenine pathway functions under physiological and pathological conditions.


Subject(s)
Brain/metabolism , Gas Chromatography-Mass Spectrometry/methods , Kynurenine/metabolism , Tandem Mass Spectrometry/methods , Animals , Brain/pathology , Brain Chemistry , Kynurenine/analysis , Male , Microdialysis , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...