Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746247

ABSTRACT

The three-dimensional organization of chromatin is thought to play an important role in controlling gene expression. Specificity in expression is achieved through the interaction of transcription factors and other nuclear proteins with particular sequences of DNA. At unphysiological concentrations many of these nuclear proteins can phase-separate in the absence of DNA, and it has been hypothesized that, in vivo, the thermodynamic forces driving these phases help determine chromosomal organization. However it is unclear how DNA, itself a long polymer subject to configurational transitions, interacts with three-dimensional protein phases. Here we show that a long compressible polymer can be coupled to interacting protein mixtures, leading to a generalized prewetting transition where polymer collapse is coincident with a locally stabilized liquid droplet. We use lattice Monte-Carlo simulations and a mean-field theory to show that these phases can be stable even in regimes where both polymer collapse and coexisting liquid phases are unstable in isolation, and that these new transitions can be either abrupt or continuous. For polymers with internal linear structure we further show that changes in the concentration of bulk components can lead to changes in three-dimensional polymer structure. In the nucleus there are many distinct proteins that interact with many different regions of chromatin, potentially giving rise to many different Prewet phases. The simple systems we consider here highlight chromatin's role as a lower-dimensional surface whose interactions with proteins are required for these novel phases.

2.
ArXiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38745698

ABSTRACT

The three-dimensional organization of chromatin is thought to play an important role in controlling gene expression. Specificity in expression is achieved through the interaction of transcription factors and other nuclear proteins with particular sequences of DNA. At unphysiological concentrations many of these nuclear proteins can phase-separate in the absence of DNA, and it has been hypothesized that, in vivo, the thermodynamic forces driving these phases help determine chromosomal organization. However it is unclear how DNA, itself a long polymer subject to configurational transitions, interacts with three-dimensional protein phases. Here we show that a long compressible polymer can be coupled to interacting protein mixtures, leading to a generalized prewetting transition where polymer collapse is coincident with a locally stabilized liquid droplet. We use lattice Monte-Carlo simulations and a mean-field theory to show that these phases can be stable even in regimes where both polymer collapse and coexisting liquid phases are unstable in isolation, and that these new transitions can be either abrupt or continuous. For polymers with internal linear structure we further show that changes in the concentration of bulk components can lead to changes in three-dimensional polymer structure. In the nucleus there are many distinct proteins that interact with many different regions of chromatin, potentially giving rise to many different Prewet phases. The simple systems we consider here highlight chromatin's role as a lower-dimensional surface whose interactions with proteins are required for these novel phases.

3.
Proc Natl Acad Sci U S A ; 121(6): e2308215121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38294944

ABSTRACT

In various biological systems, information from many noisy molecular receptors must be integrated into a collective response. A striking example is the thermal imaging organ of pit vipers. Single nerve fibers in the organ reliably respond to milli-Kelvin (mK) temperature increases, a thousand times more sensitive than their molecular sensors, thermo-transient receptor potential (TRP) ion channels. Here, we propose a mechanism for the integration of this molecular information. In our model, amplification arises due to proximity to a dynamical bifurcation, separating a regime with frequent and regular action potentials (APs), from a regime where APs are irregular and infrequent. Near the transition, AP frequency can have an extremely sharp dependence on temperature, naturally accounting for the thousand-fold amplification. Furthermore, close to the bifurcation, most of the information about temperature available in the TRP channels' kinetics can be read out from the times between consecutive APs even in the presence of readout noise. A key model prediction is that the coefficient of variation in the distribution of interspike times decreases with AP frequency, and quantitative comparison with experiments indeed suggests that nerve fibers of snakes are located very close to the bifurcation. While proximity to such bifurcation points typically requires fine-tuning of parameters, we propose that having feedback act from the order parameter (AP frequency) onto the control parameter robustly maintains the system in the vicinity of the bifurcation. This robustness suggests that similar feedback mechanisms might be found in other sensory systems which also need to detect tiny signals in a varying environment.


Subject(s)
Crotalinae , Transient Receptor Potential Channels , Animals , Snakes/physiology , Temperature , Action Potentials
4.
Phys Rev Lett ; 131(6): 068401, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37625074

ABSTRACT

Many biological processes require timely communication between molecular components. Cells employ diverse physical channels to this end, transmitting information through diffusion, electrical depolarization, and mechanical waves among other strategies. Here we bound the energetic cost of transmitting information through these physical channels, in k_{B}T/bit, as a function of the size of the sender and receiver, their spatial separation, and the communication latency. These calculations provide an estimate for the energy costs associated with information processing arising from the physical constraints of the cellular environment, which we find to be many orders of magnitude larger than unity in natural units. From these calculations, we construct a phase diagram indicating where each strategy is most efficient. Our results suggest that intracellular information transfer may constitute a substantial energetic cost. This provides a new tool for understanding tradeoffs in cellular network function.


Subject(s)
Cognition , Signal Transduction , Communication , Diffusion , Electricity
5.
ArXiv ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37214131

ABSTRACT

In various biological systems information from many noisy molecular receptors must be integrated into a collective response. A striking example is the thermal imaging organ of pit vipers. Single nerve fibers in the organ reliably respond to mK temperature increases, a thousand times more sensitive than their molecular sensors, thermo-TRP ion channels. Here, we propose a mechanism for the integration of this molecular information. In our model, amplification arises due to proximity to a dynamical bifurcation, separating a regime with frequent and regular action potentials (APs), from a regime where APs are irregular and infrequent. Near the transition, AP frequency can have an extremely sharp dependence on temperature, naturally accounting for the thousand-fold amplification. Furthermore, close to the bifurcation, most of the information about temperature available in the TRP channels' kinetics can be read out from the timing of APs even in the presence of readout noise. While proximity to such bifurcation points typically requires fine-tuning of parameters, we propose that having feedback act from the order parameter (AP frequency) onto the control parameter robustly maintains the system in the vicinity of the bifurcation. This robustness suggests that similar feedback mechanisms might be found in other sensory systems which also need to detect tiny signals in a varying environment.

6.
Entropy (Basel) ; 25(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36981323

ABSTRACT

Inference from limited data requires a notion of measure on parameter space, which is most explicit in the Bayesian framework as a prior distribution. Jeffreys prior is the best-known uninformative choice, the invariant volume element from information geometry, but we demonstrate here that this leads to enormous bias in typical high-dimensional models. This is because models found in science typically have an effective dimensionality of accessible behaviors much smaller than the number of microscopic parameters. Any measure which treats all of these parameters equally is far from uniform when projected onto the sub-space of relevant parameters, due to variations in the local co-volume of irrelevant directions. We present results on a principled choice of measure which avoids this issue and leads to unbiased posteriors by focusing on relevant parameters. This optimal prior depends on the quantity of data to be gathered, and approaches Jeffreys prior in the asymptotic limit. However, for typical models, this limit cannot be justified without an impossibly large increase in the quantity of data, exponential in the number of microscopic parameters.

7.
Biophys J ; 122(6): 1105-1117, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36785512

ABSTRACT

Bilayer membranes composed of cholesterol and phospholipids exhibit diverse forms of nonideal mixing. In particular, many previous studies document macroscopic liquid-liquid phase separation as well as nanometer-scale heterogeneity in membranes of phosphatidylcholine (PC) lipids and cholesterol. Here, we present experimental measurements of cholesterol chemical potential (µc) in binary membranes containing dioleoyl PC (DOPC), 1-palmitoyl-2-oleoyl PC (POPC), or dipalmitoyl PC (DPPC), and in ternary membranes of DOPC and DPPC, referenced to crystalline cholesterol. µc is the thermodynamic quantity that dictates the availability of cholesterol to bind other factors, and notably must be equal between coexisting phases of a phase separated mixture. It is simply related to concentration under conditions of ideal mixing, but is far from ideal for the majority of lipid mixtures investigated here. Measurements of µc can vary with phospholipid composition by 1.5 kBT at constant cholesterol mole fraction implying a more than fivefold change in its availability for binding receptors and other reactions. Experimental measurements are fit to thermodynamic models including cholesterol-DPPC complexes or pairwise interactions between lipid species to provide intuition about the magnitude of interactions. These findings reinforce that µc depends on membrane composition overall, suggesting avenues for cells to alter the availability of cholesterol without varying cholesterol concentration.


Subject(s)
Cholesterol , Phosphatidylcholines , Phosphatidylcholines/chemistry , Cholesterol/metabolism , Thermodynamics , Lipid Bilayers/chemistry
8.
Rep Prog Phys ; 86(3)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36576176

ABSTRACT

Complex models in physics, biology, economics, and engineering are oftensloppy, meaning that the model parameters are not well determined by the model predictions for collective behavior. Many parameter combinations can vary over decades without significant changes in the predictions. This review uses information geometry to explore sloppiness and its deep relation to emergent theories. We introduce themodel manifoldof predictions, whose coordinates are the model parameters. Itshyperribbonstructure explains why only a few parameter combinations matter for the behavior. We review recent rigorous results that connect the hierarchy of hyperribbon widths to approximation theory, and to the smoothness of model predictions under changes of the control variables. We discuss recent geodesic methods to find simpler models on nearby boundaries of the model manifold-emergent theories with fewer parameters that explain the behavior equally well. We discuss a Bayesian prior which optimizes the mutual information between model parameters and experimental data, naturally favoring points on the emergent boundary theories and thus simpler models. We introduce a 'projected maximum likelihood' prior that efficiently approximates this optimal prior, and contrast both to the poor behavior of the traditional Jeffreys prior. We discuss the way the renormalization group coarse-graining in statistical mechanics introduces a flow of the model manifold, and connect stiff and sloppy directions along the model manifold with relevant and irrelevant eigendirections of the renormalization group. Finally, we discuss recently developed 'intensive' embedding methods, allowing one to visualize the predictions of arbitrary probabilistic models as low-dimensional projections of an isometric embedding, and illustrate our method by generating the model manifold of the Ising model.


Subject(s)
Models, Statistical , Physics , Bayes Theorem , Engineering
9.
Sci Adv ; 8(1): eabl4411, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34985955

ABSTRACT

Many cellular activities, such as cell migration, cell division, phagocytosis, and exo-endocytosis, generate and are regulated by membrane tension gradients. Membrane tension gradients drive membrane flows, but there is controversy over how rapidly plasma membrane flow can relax tension gradients. Here, we show that membrane tension can propagate rapidly or slowly, spanning orders of magnitude in speed, depending on the cell type. In a neuronal terminal specialized for rapid synaptic vesicle turnover, membrane tension equilibrates within seconds. By contrast, membrane tension does not propagate in neuroendocrine adrenal chromaffin cells secreting catecholamines. Stimulation of exocytosis causes a rapid, global decrease in the synaptic terminal membrane tension, which recovers slowly due to endocytosis. Thus, membrane flow and tension equilibration may be adapted to distinct membrane recycling requirements.

10.
Phys Rev Res ; 4(3)2022.
Article in English | MEDLINE | ID: mdl-38343561

ABSTRACT

Theoretical work has shed light on the phase behavior of idealized mixtures of many components with random interactions. However, typical mixtures interact through particular physical features, leading to a structured, nonrandom interaction matrix of lower rank. Here, we develop a theoretical framework for such mixtures and derive mean-field conditions for thermodynamic stability and critical behavior. Irrespective of the number of components and features, this framework allows for a generally lower-dimensional representation in the space of features and proposes a principled way to coarse-grain multicomponent mixtures as binary mixtures. Moreover, it suggests a way to systematically characterize different series of critical points and their codimensions in mean-field. Since every pairwise interaction matrix can be expressed in terms of features, our work is applicable to a broad class of mean-field models.

11.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34599097

ABSTRACT

Recent work has highlighted roles for thermodynamic phase behavior in diverse cellular processes. Proteins and nucleic acids can phase separate into three-dimensional liquid droplets in the cytoplasm and nucleus and the plasma membrane of animal cells appears tuned close to a two-dimensional liquid-liquid critical point. In some examples, cytoplasmic proteins aggregate at plasma membrane domains, forming structures such as the postsynaptic density and diverse signaling clusters. Here we examine the physics of these surface densities, employing minimal simulations of polymers prone to phase separation coupled to an Ising membrane surface in conjunction with a complementary Landau theory. We argue that these surface densities are a phase reminiscent of prewetting, in which a molecularly thin three-dimensional liquid forms on a usually solid surface. However, in surface densities the solid surface is replaced by a membrane with an independent propensity to phase separate. We show that proximity to criticality in the membrane dramatically increases the parameter regime in which a prewetting-like transition occurs, leading to a broad region where coexisting surface phases can form even when a bulk phase is unstable. Our simulations naturally exhibit three-surface phase coexistence even though both the membrane and the polymer bulk only display two-phase coexistence on their own. We argue that the physics of these surface densities may be shared with diverse functional structures seen in eukaryotic cells.


Subject(s)
Cell Membrane/physiology , Post-Synaptic Density/physiology , Animals , Cell Membrane/metabolism , Cytoplasm/metabolism , Cytoplasm/physiology , Polymers/metabolism , Post-Synaptic Density/metabolism , Proteins/metabolism , Thermodynamics
12.
Nat Commun ; 12(1): 392, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452238

ABSTRACT

Living and non-living active matter consumes energy at the microscopic scale to drive emergent, macroscopic behavior including traveling waves and coherent oscillations. Recent work has characterized non-equilibrium systems by their total energy dissipation, but little has been said about how dissipation manifests in distinct spatiotemporal patterns. We introduce a measure of irreversibility we term the entropy production factor to quantify how time reversal symmetry is broken in field theories across scales. We use this scalar, dimensionless function to characterize a dynamical phase transition in simulations of the Brusselator, a prototypical biochemically motivated non-linear oscillator. We measure the total energetic cost of establishing synchronized biochemical oscillations while simultaneously quantifying the distribution of irreversibility across spatiotemporal frequencies.


Subject(s)
Entropy , Models, Theoretical , Computer Simulation , Normal Distribution
13.
Proc Natl Acad Sci U S A ; 117(7): 3478-3483, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32019890

ABSTRACT

How much free energy is irreversibly lost during a thermodynamic process? For deterministic protocols, lower bounds on energy dissipation arise from the thermodynamic friction associated with pushing a system out of equilibrium in finite time. Recent work has also bounded the cost of precisely moving a single degree of freedom. Using stochastic thermodynamics, we compute the total energy cost of an autonomously controlled system by considering both thermodynamic friction and the entropic cost of precisely directing a single control parameter. Our result suggests a challenge to the usual understanding of the adiabatic limit: Here, even infinitely slow protocols are energetically irreversible.

14.
J Gen Physiol ; 150(12): 1769-1777, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30455180

ABSTRACT

Ion channels are embedded in the plasma membrane, a compositionally diverse two-dimensional liquid that has the potential to exert profound influence on their function. Recent experiments suggest that this membrane is poised close to an Ising critical point, below which cell-derived plasma membrane vesicles phase separate into coexisting liquid phases. Related critical points have long been the focus of study in simplified physical systems, but their potential roles in biological function have been underexplored. Here we apply both exact and stochastic techniques to the lattice Ising model to study several ramifications of proximity to criticality for idealized lattice channels, whose function is coupled through boundary interactions to critical fluctuations of membrane composition. Because of diverging susceptibilities of system properties to thermodynamic parameters near a critical point, such a lattice channel's activity becomes strongly influenced by perturbations that affect the critical temperature of the underlying Ising model. In addition, its kinetics acquire a range of time scales from its surrounding membrane, naturally leading to non-Markovian dynamics. Our model may help to unify existing experimental results relating the effects of small-molecule perturbations on membrane properties and ion channel function. We also suggest ways in which the role of this mechanism in regulating real ion channels and other membrane-bound proteins could be tested in the future.


Subject(s)
Ion Channels/chemistry , Models, Chemical , Algorithms , Allosteric Regulation , Computer Simulation , Kinetics
15.
Proc Natl Acad Sci U S A ; 115(8): 1760-1765, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29434042

ABSTRACT

We use the language of uninformative Bayesian prior choice to study the selection of appropriately simple effective models. We advocate for the prior which maximizes the mutual information between parameters and predictions, learning as much as possible from limited data. When many parameters are poorly constrained by the available data, we find that this prior puts weight only on boundaries of the parameter space. Thus, it selects a lower-dimensional effective theory in a principled way, ignoring irrelevant parameter directions. In the limit where there are sufficient data to tightly constrain any number of parameters, this reduces to the Jeffreys prior. However, we argue that this limit is pathological when applied to the hyperribbon parameter manifolds generic in science, because it leads to dramatic dependence on effects invisible to experiment.


Subject(s)
Models, Statistical , Algorithms , Bayes Theorem
16.
Biophys J ; 111(3): 537-545, 2016 Aug 09.
Article in English | MEDLINE | ID: mdl-27508437

ABSTRACT

Diverse molecules induce general anesthesia with potency strongly correlated with both their hydrophobicity and their effects on certain ion channels. We recently observed that several n-alcohol anesthetics inhibit heterogeneity in plasma-membrane-derived vesicles by lowering the critical temperature (Tc) for phase separation. Here, we exploit conditions that stabilize membrane heterogeneity to further test the correlation between the anesthetic potency of n-alcohols and effects on Tc. First, we show that hexadecanol acts oppositely to n-alcohol anesthetics on membrane mixing and antagonizes ethanol-induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described "intoxication reversers" raise Tc and counter ethanol's effects in vesicles, mimicking the findings of previous electrophysiological and behavioral measurements. Third, we find that elevated hydrostatic pressure, long known to reverse anesthesia, also raises Tc in vesicles with a magnitude that counters the effect of butanol at relevant concentrations and pressures. Taken together, these results demonstrate that ΔTc predicts anesthetic potency for n-alcohols better than hydrophobicity in a range of contexts, supporting a mechanistic role for membrane heterogeneity in general anesthesia.


Subject(s)
Alcohols/pharmacology , Anesthesia , Membrane Microdomains/drug effects , Alcohols/chemistry , Animals , Behavior, Animal/drug effects , Cell Line, Tumor , Hydrophobic and Hydrophilic Interactions , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Rats , Temperature , Xenopus laevis
17.
J Chem Phys ; 143(1): 010901, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26156455

ABSTRACT

Large scale models of physical phenomena demand the development of new statistical and computational tools in order to be effective. Many such models are "sloppy," i.e., exhibit behavior controlled by a relatively small number of parameter combinations. We review an information theoretic framework for analyzing sloppy models. This formalism is based on the Fisher information matrix, which is interpreted as a Riemannian metric on a parameterized space of models. Distance in this space is a measure of how distinguishable two models are based on their predictions. Sloppy model manifolds are bounded with a hierarchy of widths and extrinsic curvatures. The manifold boundary approximation can extract the simple, hidden theory from complicated sloppy models. We attribute the success of simple effective models in physics as likewise emerging from complicated processes exhibiting a low effective dimensionality. We discuss the ramifications and consequences of sloppy models for biochemistry and science more generally. We suggest that the reason our complex world is understandable is due to the same fundamental reason: simple theories of macroscopic behavior are hidden inside complicated microscopic processes.


Subject(s)
Models, Theoretical , Physics/methods , Systems Biology/methods
18.
Nat Commun ; 6: 6697, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25819404

ABSTRACT

Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs.


Subject(s)
Action Potentials/physiology , Axons/physiology , Cell Membrane/physiology , Cytoplasm/physiology , Cytoskeleton/physiology , Biomechanical Phenomena , Models, Biological , Models, Theoretical , Neurons/physiology
19.
Phys Rev Lett ; 115(26): 260603, 2015 Dec 31.
Article in English | MEDLINE | ID: mdl-26764981

ABSTRACT

Biological and engineered systems operate by coupling function to the transfer of heat and/or particles down a thermal or chemical gradient. In idealized deterministically driven systems, thermodynamic control can be exerted reversibly, with no entropy production, as long as the rate of the protocol is made slow compared to the equilibration time of the system. Here we consider fully realizable, entropically driven systems where the control parameters themselves obey rules that are reversible and that acquire directionality in time solely through dissipation. We show that when such a system moves in a directed way through thermodynamic space, it must produce entropy that is on average larger than its generalized displacement as measured by the Fisher information metric. This distance measure is subextensive but cannot be made small by slowing the rate of the protocol.

20.
Biophys J ; 105(12): 2751-9, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24359747

ABSTRACT

A large and diverse array of small hydrophobic molecules induce general anesthesia. Their efficacy as anesthetics has been shown to correlate both with their affinity for a hydrophobic environment and with their potency in inhibiting certain ligand-gated ion channels. In this study we explore the effects that n-alcohols and other liquid anesthetics have on the two-dimensional miscibility critical point observed in cell-derived giant plasma membrane vesicles (GPMVs). We show that anesthetics depress the critical temperature (Tc) of these GPMVs without strongly altering the ratio of the two liquid phases found below Tc. The magnitude of this affect is consistent across n-alcohols when their concentration is rescaled by the median anesthetic concentration (AC50) for tadpole anesthesia, but not when plotted against the overall concentration in solution. At AC50 we see a 4°C downward shift in Tc, much larger than is typically seen in the main chain transition at these anesthetic concentrations. GPMV miscibility critical temperatures are also lowered to a similar extent by propofol, phenylethanol, and isopropanol when added at anesthetic concentrations, but not by tetradecanol or 2,6 diterbutylphenol, two structural analogs of general anesthetics that are hydrophobic but have no anesthetic potency. We propose that liquid general anesthetics provide an experimental tool for lowering critical temperatures in plasma membranes of intact cells, which we predict will reduce lipid-mediated heterogeneity in a way that is complimentary to increasing or decreasing cholesterol. Also, several possible implications of our results are discussed in the context of current models of anesthetic action on ligand-gated ion channels.


Subject(s)
Alcohols/pharmacology , Anesthetics, General/pharmacology , Cell Membrane/drug effects , Temperature , Animals , Cell Line, Tumor , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...