Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Infect Dis ; 229(3): 795-799, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-37889513

ABSTRACT

The RTS,S/AS02A malaria vaccine is based on the Plasmodium falciparum circumsporozoite protein (PfCSP), which is O-fucosylated on the sporozoite surface. We determined whether RTS,S/AS02A-induced immunoglobulin G (IgG) antibodies recognize vaccine-like nonfucosylated PfCSP better than native-like fucosylated PfCSP. Similar to previous vaccine trials, RTS,S/AS02A vaccination induced high anti-PfCSP IgG levels associated with malaria protection. IgG recognition of nonfucosylated and fucosylated PfCSP was equivalent, suggesting that PfCSP fucosylation does not affect antibody recognition. Clinical Trials Registration. NCT00197041.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Humans , Plasmodium falciparum , Malaria, Falciparum/prevention & control , Immunoglobulin G , Antibodies, Protozoan , Protozoan Proteins
2.
Biol Psychiatry Glob Open Sci ; 2(4): 411-420, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36324658

ABSTRACT

Background: Obsessive-compulsive symptoms (OCSs) during childhood predispose to obsessive-compulsive disorder and have been associated with changes in brain circuits altered in obsessive-compulsive disorder samples. OCSs may arise from disturbed glutamatergic neurotransmission, impairing cognitive oscillations and promoting overstable functional states. Methods: A total of 227 healthy children completed the Obsessive Compulsive Inventory-Child Version and underwent a resting-state functional magnetic resonance imaging examination. Genome-wide data were obtained from 149 of them. We used a graph theory-based approach and characterized associations between OCSs and dynamic functional connectivity (dFC). dFC evaluates fluctuations over time in FC between brain regions, which allows characterizing regions with stable connectivity patterns (attractors). We then compared the spatial similarity between OCS-dFC correlation maps and mappings of genetic expression across brain regions to identify genes potentially associated with connectivity changes. In post hoc analyses, we investigated which specific single nucleotide polymorphisms of these genes moderated the association between OCSs and patterns of dFC. Results: OCSs correlated with decreased attractor properties in the left ventral putamen and increased attractor properties in (pre)motor areas and the left hippocampus. At the specific symptom level, increased attractor properties in the right superior parietal cortex correlated with ordering symptoms. In the hippocampus, we identified two single nucleotide polymorphisms in glutamatergic neurotransmission genes (GRM7, GNAQ) that moderated the association between OCSs and attractor features. Conclusions: We provide evidence that in healthy children, the association between dFC changes and OCSs may be mapped onto brain circuits predicted by prevailing neurobiological models of obsessive-compulsive disorder. Moreover, our findings support the involvement of glutamatergic neurotransmission in such brain network changes.

3.
BMC Med ; 20(1): 379, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36224590

ABSTRACT

This study evaluated the persistence of IgM, IgA, and IgG to SARS-CoV-2 spike and nucleocapsid antigens up to 616 days since the onset of symptoms in a longitudinal cohort of 247 primary health care workers from Barcelona, Spain, followed up since the start of the pandemic. The study also assesses factors affecting antibody levels, including comorbidities and the responses to variants of concern as well as the frequency of reinfections. Despite a gradual and significant decline in antibody levels with time, seropositivity to five SARS-CoV-2 antigens combined was always higher than 90% over the whole study period. In a subset of 23 participants who had not yet been vaccinated by November 2021, seropositivity remained at 95.65% (47.83% IgM, 95.65% IgA, 95.65% IgG). IgG seropositivity against Alpha and Delta predominant variants was comparable to that against the Wuhan variant, while it was lower for Gamma and Beta (minority) variants and for IgA and IgM. Antibody levels at the time point closest to infection were associated with age, smoking, obesity, hospitalization, fever, anosmia/hypogeusia, chest pain, and hypertension in multivariable regression models. Up to 1 year later, just before the massive roll out of vaccination, antibody levels were associated with age, occupation, hospitalization, duration of symptoms, anosmia/hypogeusia, fever, and headache. In addition, tachycardia and cutaneous symptoms associated with slower antibody decay, and oxygen supply with faster antibody decay. Eight reinfections (3.23%) were detected in low responders, which is consistent with a sustained protective role for anti-spike naturally acquired antibodies. Stable persistence of IgG and IgA responses and cross-recognition of the predominant variants circulating in the 2020-2021 period indicate long-lasting and largely variant-transcending humoral immunity in the initial 20.5 months of the pandemic, in the absence of vaccination.


Subject(s)
Ageusia , COVID-19 , Anosmia , Antibodies, Viral , COVID-19/epidemiology , Humans , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Oxygen , Reinfection , SARS-CoV-2
4.
JCI Insight ; 7(10)2022 05 23.
Article in English | MEDLINE | ID: mdl-35446785

ABSTRACT

The RTS,S/AS01E vaccine targets the circumsporozoite protein (CSP) of the Plasmodium falciparum (P. falciparum) parasite. Protein microarrays were used to measure levels of IgG against 1000 P. falciparum antigens in 2138 infants (age 6-12 weeks) and children (age 5-17 months) from 6 African sites of the phase III trial, sampled before and at 4 longitudinal visits after vaccination. One month postvaccination, IgG responses to 17% of all probed antigens showed differences between RTS,S/AS01E and comparator vaccination groups, whereas no prevaccination differences were found. A small subset of antigens presented IgG levels reaching 4- to 8-fold increases in the RTS,S/AS01E group, comparable in magnitude to anti-CSP IgG levels (~11-fold increase). They were strongly cross-correlated and correlated with anti-CSP levels, waning similarly over time and reincreasing with the booster dose. Such an intriguing phenomenon may be due to cross-reactivity of anti-CSP antibodies with these antigens. RTS,S/AS01E vaccinees with strong off-target IgG responses had an estimated lower clinical malaria incidence after adjusting for age group, site, and postvaccination anti-CSP levels. RTS,S/AS01E-induced IgG may bind strongly not only to CSP, but also to unrelated malaria antigens, and this seems to either confer, or at least be a marker of, increased protection from clinical malaria.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Antibodies, Protozoan , Antigens, Protozoan , Child , Humans , Immunoglobulin G , Infant , Malaria/prevention & control , Malaria, Falciparum/prevention & control , Vaccination
5.
Front Aging Neurosci ; 14: 795764, 2022.
Article in English | MEDLINE | ID: mdl-35283753

ABSTRACT

Background: Loneliness is most prevalent during adolescence and late life and has been associated with mental health disorders as well as with cognitive decline during aging. Associations between longitudinal measures of loneliness and verbal episodic memory and brain structure should thus be investigated. Methods: We sought to determine associations between loneliness and verbal episodic memory as well as loneliness and hippocampal volume trajectories across three longitudinal cohorts within the Lifebrain Consortium, including children, adolescents (N = 69, age range 10-15 at baseline examination) and older adults (N = 1468 over 60). We also explored putative loneliness correlates of cortical thinning across the entire cortical mantle. Results: Loneliness was associated with worsening of verbal episodic memory in one cohort of older adults. Specifically, reporting medium to high levels of loneliness over time was related to significantly increased memory loss at follow-up examinations. The significance of the loneliness-memory change association was lost when eight participants were excluded after having developed dementia in any of the subsequent follow-up assessments. No significant structural brain correlates of loneliness were found, neither hippocampal volume change nor cortical thinning. Conclusion: In the present longitudinal European multicenter study, the association between loneliness and episodic memory was mainly driven by individuals exhibiting progressive cognitive decline, which reinforces previous findings associating loneliness with cognitive impairment and dementia.

6.
Front Aging Neurosci ; 13: 695232, 2021.
Article in English | MEDLINE | ID: mdl-34381353

ABSTRACT

Previous evidence suggests that transcranial direct current stimulation (tDCS) to the left dorsolateral prefrontal cortex (l-DLPFC) can enhance episodic memory in subjects with subjective cognitive decline (SCD), known to be at risk of dementia. Our main goal was to replicate such findings in an independent sample and elucidate if baseline magnetic resonance imaging (MRI) characteristics predicted putative memory improvement. Thirty-eight participants with SCD (aged: 60-65 years) were randomly assigned to receive active (N = 19) or sham (N = 19) tDCS in a double-blind design. They underwent a verbal learning task with 15 words (DAY-1), and 24 h later (DAY-2) stimulation was applied for 15 min at 1.5 mA targeting the l-DLPFC after offering a contextual reminder. Delayed recall and recognition were measured 1 day after the stimulation session (DAY-3), and at 1-month follow-up (DAY-30). Before the experimental session, structural and functional MRI were acquired. We identified a group∗time interaction in recognition memory, being the active tDCS group able to maintain stable memory performance between DAY-3 and DAY-30. MRI results revealed that individuals with superior tDCS-induced effects on memory reconsolidation exhibited higher left temporal lobe thickness and greater intrinsic FC within the default-mode network. Present findings confirm that tDCS, through the modulation of memory reconsolidation, is capable of enhancing performance in people with self-perceived cognitive complaints. Results suggest that SCD subjects with more preserved structural and functional integrity might benefit from these interventions, promoting maintenance of cognitive function in a population at risk to develop dementia.

7.
Elife ; 102021 06 28.
Article in English | MEDLINE | ID: mdl-34180395

ABSTRACT

Development and aging of the cerebral cortex show similar topographic organization and are governed by the same genes. It is unclear whether the same is true for subcortical regions, which follow fundamentally different ontogenetic and phylogenetic principles. We tested the hypothesis that genetically governed neurodevelopmental processes can be traced throughout life by assessing to which degree brain regions that develop together continue to change together through life. Analyzing over 6000 longitudinal MRIs of the brain, we used graph theory to identify five clusters of coordinated development, indexed as patterns of correlated volumetric change in brain structures. The clusters tended to follow placement along the cranial axis in embryonic brain development, suggesting continuity from prenatal stages, and correlated with cognition. Across independent longitudinal datasets, we demonstrated that developmental clusters were conserved through life. Twin-based genetic correlations revealed distinct sets of genes governing change in each cluster. Single-nucleotide polymorphisms-based analyses of 38,127 cross-sectional MRIs showed a similar pattern of genetic volume-volume correlations. In conclusion, coordination of subcortical change adheres to fundamental principles of lifespan continuity and genetic organization.


Subject(s)
Cerebral Cortex/growth & development , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Longevity , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
8.
Neuroimage ; 237: 118150, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33984493

ABSTRACT

Imaging studies on neuronal network formation provide relevant information as to how the brain matures during adolescence. We used a novel imaging approach combining well-established MRI measures of local functional connectivity that jointly provide qualitatively different information relating to the functional structure of the cerebral cortex. To investigate the adolescent transition into adulthood, we comparatively assessed 169 preadolescents aged 8-12 years and 121 healthy adults. Whole-brain functional connectivity maps were generated using multi-distance measures of intracortical neural activity coupling defined within iso-distant local areas. Such Iso-Distant Average Correlation (IDAC) measures therefore represent the average temporal correlation of a given brain unit, or voxel, with other units situated at increasingly separated iso-distant intervals. The results indicated that between-group differences in the functional structure of the cerebral cortex are extensive and implicate part of the lateral prefrontal cortex, a medial frontal/anterior cingulate region, the superior parietal lobe extending to the somatosensory strip and posterior cingulate cortex, and local connections within the visual cortex, hippocampus, amygdala and insula. We thus provided detail of the cerebral cortex functional structure maturation during the transition to adulthood, which may serve to establish more accurate links between adolescent performance gains and cerebral cortex maturation. Remarkably, our study provides new information as to the cortical maturation processes in prefrontal areas relevant to executive functioning and rational learning, medial frontal areas playing an active role in the cognitive appraisal of emotion and anxiety, and superior parietal cortices strongly associated with bodily self-consciousness in the context of body image formation.


Subject(s)
Cerebral Cortex/physiology , Connectome/methods , Nerve Net/physiology , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Child , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Nerve Net/growth & development , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology
9.
Brain Connect ; 11(5): 393-403, 2021 06.
Article in English | MEDLINE | ID: mdl-33797949

ABSTRACT

Background: Functional magnetic resonance imaging (fMRI) of spontaneous brain activity permits the identification of functional networks on the basis of region synchrony. The functional coupling between the elements of a neural system increases during brain activation. However, neural synchronization may also be the effect of inhibitory gamma-aminobutyric acid (GABA) neurons in states of brain inhibition such as sleep or pharmacological sedation. We investigated the effects of an oral dose of alprazolam, a classical benzodiazepine known to enhance inhibitory neurotransmission, using recently developed measures of local functional connectivity. Methods: In a randomized, double-blind, placebo-controlled, crossover design, 32 non-treatment-seeking individuals with social anxiety underwent two identical resting-state fMRI sessions on separate days after receiving 0.75 mg of alprazolam and placebo. Functional connectivity maps of the cerebral cortex were generated by using multidistance functional connectivity measures defined within iso-distant local areas. Results: Relative to placebo, increased intracortical functional connectivity was observed in the alprazolam condition in visual, auditory, and sensorimotor cortices, and in areas of sensory integration such as the posterior insula and orbitofrontal cortex (OFC). Alprazolam significantly reduced subjective arousal compared with placebo, and the change was associated with variations in multidistance functional connectivity measures in the OFC. Discussion: In conclusion, we report evidence that alprazolam significantly modifies neural activity coupling at rest in the form of functional connectivity enhancement within the cerebral cortex. The effect of alprazolam was particularly evident in the cortical sensory system, which would further suggest a differentiated effect of GABA inhibition on sensory processing.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Brain , Cerebral Cortex/diagnostic imaging , Humans , gamma-Aminobutyric Acid
10.
Front Psychol ; 12: 627547, 2021.
Article in English | MEDLINE | ID: mdl-33716892

ABSTRACT

Objective: Loneliness is the subjective distress of feeling alone and has a strong impact on wellbeing and health. In addition to well-known predictors like isolation and poor health, a better understanding of the psychological determinants of loneliness would offer effective targets for future complementary interventions. Methods: In this cross-sectional observational study (N = 2,240), we compared the explanatory power of several important risk factors of loneliness with the affective, motivational, and cognitive aspects of the Meaning in Life (MiL) construct. Different nested linear models were compared including socio-demographic, lifestyles, social-connectedness, and self-rated health variables, to assess the overlapping and non-overlapping explanatory power of each of them. Results: Health status and MiL were found to be the most important predictors of loneliness, followed by social connectedness and, with a much lower weight, lifestyles, and socio-demographic factors. Within the MiL factor, the most cognitive component, sense of coherence, had a greater explanatory power than the more affective and motivational ones. Conclusion: Reduced MiL, the capacity of an individual to attach "value and significance" to life, is a crucial predictor to the feeling of loneliness. These results suggest that programs aiming to combat loneliness should go well beyond situational interventions and include more cognitive, value-centered interventions that enable individuals to define and pursue a meaningful vital plan.

12.
BJPsych Open ; 7(1): e30, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33427159

ABSTRACT

As in previous periods of quarantine, lockdown confinement measures dictated to control SARS-CoV-2 would be expected to negatively affect mental health. We investigated the immediate effects (over a 10 day period) of a strict nationwide stay-at-home order imposed in Spain, one of the countries most affected by the COVID-19 pandemic. Focusing our analysis on the feelings of loneliness, we obtained our measures within a social context characterised by strong and continuous public and governmental support for increasing social bonds and cooperation in order to face the common public threat. Leveraging data from the Barcelona Brain Health Initiative, a prospective population-based study cohort, the short UCLA Loneliness Scale was administered to 1604 participants 2 years and 1 year before the stay-at-home lockdown and repeated, on average, 10 days after the official confinement order issued by the Spanish government. Ratings of loneliness remained stable during the 2 years before lockdown; however, they decreased significantly during the early stages of home confinement. This effect was particularly significant for the item 'feeling excluded from others' and was also observed among individuals who were confined alone. Overall, the results suggest that gestures and manifestations of appreciation by people for the labour and efforts of certain individuals, along with official campaigns designed to promote feelings of inclusion and belonging, may have beneficial effects on feelings of loneliness, a negative emotional state strongly regarded as a risk factor for impaired mental and general health status. Further assessments during the later stages of home confinement are now warranted.

13.
J Am Acad Child Adolesc Psychiatry ; 60(6): 757-767, 2021 06.
Article in English | MEDLINE | ID: mdl-32950652

ABSTRACT

OBJECTIVE: Commonly observed subclinical obsessive-compulsive symptoms in healthy children may predispose to obsessive-compulsive disorder (OCD). Therefore, investigating the underlying neurobiology may be relevant to identify alterations in specific brain circuits potentially accounting for clinical heterogeneity in OCD without the confounding effects of clinical samples. We analyzed the brain correlates of different obsessive-compulsive symptoms in a large group of healthy children using functional connectivity measures. METHOD: We evaluated 227 healthy children (52% girls; mean [SD] age 9.71 [0.86] years; range, 8-12.1 years). Participants underwent clinical assessment with the Obsessive-Compulsive Inventory-Child Version and a resting-state functional magnetic resonance imaging examination. Total and symptom-specific severity were correlated with voxelwise global functional connectivity degree values. Significant clusters were then used as seeds of interest in seed-to-voxel analyses. Modulating effects of age and sex were also assessed. RESULTS: Global functional connectivity of the left ventral putamen and medial dorsal thalamus correlated negatively with total obsessive-compulsive symptom severity. Seed-to-voxel analyses revealed specific negative correlations from these clusters with limbic, sensorimotor, and insular regions in association with obsessing, ordering, and doubt-checking symptoms, respectively. Hoarding symptoms were associated with negative correlations between the left medial dorsal thalamus and a widespread pattern of regions, with such associations modulated by sex and age. CONCLUSION: Our findings concur with prevailing neurobiological models of OCD on the importance of cortico-striato-thalamo-cortical dysfunction to account for symptom severity. Notably, we showed that changes in cortico-striato-thalamo-cortical connectivity are present at subclinical stages, which may result in an increased vulnerability for OCD. Moreover, we mapped different symptom dimensions onto specific cortico-striato-thalamo-cortical circuit attributes.


Subject(s)
Brain Mapping , Obsessive-Compulsive Disorder , Brain/diagnostic imaging , Child , Female , Humans , Magnetic Resonance Imaging , Male , Neural Pathways , Obsessive-Compulsive Disorder/diagnostic imaging
14.
Neuroimage ; 224: 117416, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33017652

ABSTRACT

Analyzing data from multiple neuroimaging studies has great potential in terms of increasing statistical power, enabling detection of effects of smaller magnitude than would be possible when analyzing each study separately and also allowing to systematically investigate between-study differences. Restrictions due to privacy or proprietary data as well as more practical concerns can make it hard to share neuroimaging datasets, such that analyzing all data in a common location might be impractical or impossible. Meta-analytic methods provide a way to overcome this issue, by combining aggregated quantities like model parameters or risk ratios. Most meta-analytic tools focus on parametric statistical models, and methods for meta-analyzing semi-parametric models like generalized additive models have not been well developed. Parametric models are often not appropriate in neuroimaging, where for instance age-brain relationships may take forms that are difficult to accurately describe using such models. In this paper we introduce meta-GAM, a method for meta-analysis of generalized additive models which does not require individual participant data, and hence is suitable for increasing statistical power while upholding privacy and other regulatory concerns. We extend previous works by enabling the analysis of multiple model terms as well as multivariate smooth functions. In addition, we show how meta-analytic p-values can be computed for smooth terms. The proposed methods are shown to perform well in simulation experiments, and are demonstrated in a real data analysis on hippocampal volume and self-reported sleep quality data from the Lifebrain consortium. We argue that application of meta-GAM is especially beneficial in lifespan neuroscience and imaging genetics. The methods are implemented in an accompanying R package metagam, which is also demonstrated.


Subject(s)
Meta-Analysis as Topic , Models, Statistical , Neuroimaging , Computer Security , Computer Simulation , Confidentiality , Hippocampus/anatomy & histology , Hippocampus/diagnostic imaging , Humans , Organ Size , Self Report , Sleep , Statistics as Topic
15.
Cereb Cortex ; 31(4): 1953-1969, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33236064

ABSTRACT

We examined whether sleep quality and quantity are associated with cortical and memory changes in cognitively healthy participants across the adult lifespan. Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index, PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n = 2205, 4363 MRIs, 18-92 years). In additional analyses, we tested coherence with cell-specific gene expression maps from the Allen Human Brain Atlas, and relations to changes in memory performance. "PSQI # 1 Subjective sleep quality" and "PSQI #5 Sleep disturbances" were related to thinning of the right lateral temporal cortex, with lower quality and more disturbances being associated with faster thinning. The association with "PSQI #5 Sleep disturbances" emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. None of the sleep scales were related to a longitudinal change in episodic memory function, suggesting that sleep-related cortical changes were independent of cognitive decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults.


Subject(s)
Aging/pathology , Cerebral Cortical Thinning/diagnostic imaging , Longevity , Memory Disorders/diagnostic imaging , Self Report , Sleep Wake Disorders/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Aging/psychology , Cerebral Cortical Thinning/epidemiology , Cerebral Cortical Thinning/psychology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/psychology , Female , Humans , Longevity/physiology , Longitudinal Studies , Magnetic Resonance Imaging/trends , Male , Memory Disorders/epidemiology , Memory Disorders/psychology , Middle Aged , Sleep Quality , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/psychology , Young Adult
16.
PLoS One ; 15(2): e0228754, 2020.
Article in English | MEDLINE | ID: mdl-32045448

ABSTRACT

The Barcelona Brain Health Initiative is a longitudinal cohort study that began in 2017 and aims to understand and characterize the determinants of brain health maintenance in middle aged adults. A cohort of 4686 individuals between the ages of 40 and 65 years free from any neurological or psychiatric diseases was established, and we collected extensive demographic, socio-economic information along with measures of self-perceived health and lifestyles (general health, physical activity, cognitive activity, socialization, sleep, nutrition and vital plan). Here we report on the baseline characteristics of the participants, and the results of the one-year follow-up evaluation. Participants were mainly women, highly educated, and with better lifestyles compared with the general population. After one year 60% of participants completed the one-year follow-up, and these were older, with higher educational level and with better lifestyles in some domains. In the absence of any specific interventions to-date, these participants showed small improvements in physical activity and sleep, but decreased adherence to a Mediterranean diet. These changes were negatively associated with baseline scores, and poorer habits at baseline were predictive of an improvement in lifestyle domains. Of the 2353 participants who completed the one-year follow-up, 73 had been diagnosed with new neurological and neuropsychiatric diseases. Changes in vital plan at follow-up, as well as gender, sleep quality and sense of coherence at baseline were shown to be significant risk factors for the onset of these diagnoses. Notably, gender risk factor decreased in importance as we adjusted by sleep habits, suggesting its potential mediator effects. These findings stress the importance of healthy lifestyles in sustaining brain health, and illustrate the individual benefit that can be derived from participation in longitudinal observational studies. Modifiable lifestyles, specifically quality of sleep, may partially mediate the effect of other risk factors in the development of some neuropsychiatric conditions.


Subject(s)
Brain/physiology , Health Status , Program Evaluation , Cohort Studies , Exercise , Female , Follow-Up Studies , Healthy Lifestyle , Humans , Longitudinal Studies , Male , Mental Disorders/diagnosis , Middle Aged , Nervous System Diseases/diagnosis , Quality of Life , Self Report , Sleep/physiology
17.
Cereb Cortex ; 29(11): 4753-4762, 2019 12 17.
Article in English | MEDLINE | ID: mdl-30722020

ABSTRACT

We mapped alterations of the functional structure of the cerebral cortex using a novel imaging approach in a sample of 160 obsessive-compulsive disorder (OCD) patients. Whole-brain functional connectivity maps were generated using multidistance measures of intracortical neural activity coupling defined within isodistant local areas. OCD patients demonstrated neural activity desynchronization within the orbitofrontal cortex and in primary somatosensory, auditory, visual, gustatory, and olfactory areas. Symptom severity was significantly associated with the degree of functional structure alteration in OCD-relevant brain regions. By means of a novel imaging perspective, we once again identified brain alterations in the orbitofrontal cortex, involving areas purportedly implicated in the pathophysiology of OCD. However, our results also indicated that weaker intracortical activity coupling is also present in each primary sensory area. On the basis of previous neurophysiological studies, such cortical activity desynchronization may best be interpreted as reflecting deficient inhibitory neuron activity and altered sensory filtering.


Subject(s)
Cerebral Cortex/physiopathology , Obsessive-Compulsive Disorder/physiopathology , Adolescent , Adult , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Psychiatric Status Rating Scales , Young Adult
18.
Front Aging Neurosci ; 10: 321, 2018.
Article in English | MEDLINE | ID: mdl-30405394

ABSTRACT

The Barcelona Brain Health Initiative (BBHI) is an ongoing prospective longitudinal study focused on identifying determinants of brain health. The main objectives are: (i) to characterize lifestyle, cognitive, behavioral and environmental markers related to a given individual's cognitive and mental functions in middle to old age, (ii) to assess the biological determinants predictive of maintenance of brain health, and (iii) to evaluate the impact of a controlled multi-dimensional lifestyle intervention on improving and maintaining brain health. The BBHI cohort consists of >4500 healthy participants aged 40-65 years followed through online questionnaires (Phase I) assessing participants' self-perceived health and lifestyle factors in seven different domains: overall health, physical exercise, cognitive activity, sleep, nutrition, social interactions, and life purpose. In Phase II a sub-group of 1,000 individuals is undergoing detailed in-person evaluations repeated at two-yearly intervals. These evaluations will provide deep phenotyping of brain function, including medical, neurological and psychiatric examinations, assessment of physical fitness, neuropsychological assessments, structural and functional brain magnetic resonance imaging, electroencephalography and perturbation-based non-invasive brain stimulation evaluations of brain activity, as well as collection of biological samples. Finally, in Phase III a further sub-group of 500 participants will undergo a similar in-person assessment before and after a multi-dimensional intervention to optimize lifestyle habits and evaluate its effects on cognitive and brain structure and function. The intervention group will receive remote supervision through an ICT-based solution, with the support of an expert in health and lifestyle coaching strategies aimed at promoting adherence. On the other hand, the control group will not have this coaching support, and will only receive education and recommendations about healthy habits. Results of this three-part initiative shall critically contribute to a better understanding of the determinants to promote and maintain brain health over the lifespan.

19.
Brain Connect ; 8(5): 276-287, 2018 06.
Article in English | MEDLINE | ID: mdl-29687732

ABSTRACT

There is ample evidence from basic research in neuroscience of the importance of local corticocortical networks. Millimetric resolution is achievable with current functional magnetic resonance imaging (fMRI) scanners and sequences, and consequently a number of "local" activity similarity measures have been defined to describe patterns of segregation and integration at this spatial scale. We have introduced the use of IsoDistant Average Correlation (IDAC), easily defined as the average fMRI temporal correlation of a given voxel with other voxels placed at increasingly separated isodistant intervals, to characterize the curve of local fMRI signal similarities. IDAC curves can be statistically compared using parametric multivariate statistics. Furthermore, by using red-green-blue color coding to display jointly IDAC values belonging to three different distance lags, IDAC curves can also be displayed as multidistance IDAC maps. We applied IDAC analysis to a sample of 41 subjects scanned under two different conditions, a resting state and an auditory-visual continuous stimulation. Multidistance IDAC mapping was able to discriminate between gross anatomofunctional cortical areas and, moreover, was sensitive to modulation between the two brain conditions in areas known to activate and deactivate during audiovisual tasks. Unlike previous fMRI local similarity measures already in use, our approach draws special attention to the continuous smooth pattern of local functional connectivity.


Subject(s)
Afferent Pathways/physiology , Brain Mapping , Cerebral Cortex/physiology , Correlation of Data , Nerve Net/physiology , Acoustic Stimulation , Adult , Afferent Pathways/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Computer Simulation , Female , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Models, Neurological , Nerve Net/diagnostic imaging , Oxygen/blood , Photic Stimulation , Young Adult
20.
Environ Health Perspect ; 126(2): 027012, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29504939

ABSTRACT

BACKGROUND: Proponents of the biophilia hypothesis believe that contact with nature, including green spaces, has a crucial role in brain development in children. Currently, however, we are not aware of evidence linking such exposure with potential effects on brain structure. OBJECTIVE: We determined whether lifelong exposure to residential surrounding greenness is associated with regional differences in brain volume based on 3-dimensional magnetic resonance imaging (3D MRI) among children attending primary school. METHODS: We performed a series of analyses using data from a subcohort of 253 Barcelona schoolchildren from the Brain Development and Air Pollution Ultrafine Particles in School Children (BREATHE) project. We averaged satellite-based normalized difference vegetation index (NDVI) across 100-m buffers around all residential addresses since birth to estimate each participant's lifelong exposure to residential surrounding greenness, and we used high-resolution 3D MRIs of brain anatomy to identify regional differences in voxel-wise brain volume associated with greenness exposure. In addition, we performed a supporting substudy to identify regional differences in brain volume associated with measures of working memory (d' from computerized n-back tests) and inattentiveness (hit reaction time standard error from the Attentional Network Task instrument) that were repeated four times over one year. We also performed a second supporting substudy to determine whether peak voxel tissue volumes in brain regions associated with residential greenness predicted cognitive function test scores. RESULTS: Lifelong exposure to greenness was positively associated with gray matter volume in the left and right prefrontal cortex and in the left premotor cortex and with white matter volume in the right prefrontal region, in the left premotor region, and in both cerebellar hemispheres. Some of these regions partly overlapped with regions associated with cognitive test scores (prefrontal cortex and cerebellar and premotor white matter), and peak volumes in these regions predicted better working memory and reduced inattentiveness. CONCLUSION: Our findings from a study population of urban schoolchildren in Barcelona require confirmation, but they suggest that being raised in greener neighborhoods may have beneficial effects on brain development and cognitive function. https://doi.org/10.1289/EHP1876.


Subject(s)
Brain/diagnostic imaging , Cognition/physiology , Environment , Magnetic Resonance Imaging/methods , Attention/physiology , Brain/physiology , Child , Female , Humans , Imaging, Three-Dimensional , Male , Memory, Short-Term/physiology , Reaction Time/physiology , Residence Characteristics , Spain , Time Factors , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL
...