Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Food Res Int ; 187: 114421, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763671

ABSTRACT

This study focused on the protein-stabilised triglyceride (TG)/water interfaces and oil-in-water emulsions, and explored the influence of varying molar ratios of bile salts (BSs) and phospholipids (PLs) on the intestinal lipolysis of TGs. The presence of these two major groups of biosurfactants delivered with human bile to the physiological environment of intestinal digestion was replicated in our experiments by using mixtures of individual BSs and PLs under in vitro small intestinal lipolysis conditions. Conducted initially, retrospective analysis of available scientific literature revealed that an average molar ratio of 9:4 for BSs to PLs (BS/PL) can be considered physiological in the postprandial adult human small intestine. Our experimental data showed that combining BSs and PLs synergistically enhanced interfacial activity, substantially reducing oil-water interfacial tension (IFT) during interfacial lipolysis experiments with pancreatic lipase, especially at the BS/PL-9:4 ratio. Other BS/PL molar proportions (BS/PL-6.5:6.5 and BS/PL-4:9) and an equimolar amount of BSs (BS-13) followed in IFT reduction efficiency, while using PLs alone as biosurfactants was the least efficient. In the following emulsion lipolysis experiments, BS/PL-9:4 outperformed other BS/PL mixtures in terms of enhancing the TG digestion extent. The degree of TG conversion and the desorption efficiency of interfacial material post-lipolysis correlated directly with the BS/PL ratio, decreasing as the PL proportion increased. In conclusion, this study highlights the crucial role of biliary PLs, alongside BSs, in replicating the physiological function of bile in intestinal lipolysis of emulsified TGs. Our results showed different contributions of PLs and BSs to lipolysis, strongly suggesting that any future in vitro studies aiming to simulate the human digestion conditions should take into account the impact of biliary PLs - not just BSs - to accurately mimic the physiological role of bile in intestinal lipolysis. This is particularly crucial given the fact that existing in vitro digestion protocols typically focus solely on applying specific concentrations and/or compositions of BSs to simulate the action of human bile during intestinal digestion, while overlooking the presence and concentration of biliary PLs under physiological gut conditions.


Subject(s)
Bile Acids and Salts , Digestion , Emulsions , Lipolysis , Phospholipids , Triglycerides , Emulsions/chemistry , Triglycerides/metabolism , Triglycerides/chemistry , Bile Acids and Salts/metabolism , Humans , Phospholipids/chemistry , Phospholipids/metabolism , Digestion/physiology , Lipase/metabolism , Intestine, Small/metabolism , Surface-Active Agents/chemistry
2.
Sci Rep ; 14(1): 8362, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600115

ABSTRACT

In the growing landscape of interest in natural surfactants, selecting the appropriate one for specific applications remains challenging. The extensive, yet often unsystematized, knowledge of microbial surfactants, predominantly represented by rhamnolipids (RLs), typically does not translate beyond the conditions presented in scientific publications. This limitation stems from the numerous variables and their interdependencies that characterize microbial surfactant production. We hypothesized that a computational recipe for biosynthesizing RLs with targeted applicational properties could be developed from existing literature and experimental data. We amassed literature data on RL biosynthesis and micellar solubilization and augmented it with our experimental results on the solubilization of triglycerides (TGs), a topic underrepresented in current literature. Utilizing this data, we constructed mathematical models that can predict RL characteristics and solubilization efficiency, represented as logPRL = f(carbon and nitrogen source, parameters of biosynthesis) and logMSR = f(solubilizate, rhamnolipid (e.g. logPRL), parameters of solubilization), respectively. The models, characterized by robust R2 values of respectively 0.581-0.997 and 0.804, enabled the ranking of descriptors based on their significance and impact-positive or negative-on the predicted values. These models have been translated into ready-to-use calculators, tools designed to streamline the selection process for identifying a biosurfactant optimally suited for intended applications.


Subject(s)
Glycolipids , Surface-Active Agents , Carbon
3.
Food Res Int ; 163: 112227, 2023 01.
Article in English | MEDLINE | ID: mdl-36596156

ABSTRACT

Oxidation of food-derived phospholipids (PLs) can influence nutrient digestion and induce oxidative stress in gastrointestinal epithelium. In this study, hen egg yolk PL fraction was used to evaluate the effect of lipoxygenase (LOX)-induced PL oxidation on the rate of PL hydrolysis catalyzed by pancreatic phospholipase A2 (PLA2) in the presence of bile salts (BSs). Then, PL/BS solutions containing native or oxidized PLs were used in in vitro intestinal digestion to assess the effect of PL oxidation and hydrolysis on the toxicity towards HT29 cell line. Based on the obtained results, we suggest that hexanal and (E)-2-nonenal, formed by the decomposition of PL hydroperoxides, inhibited PLA2 activity. The cell exposure to simulated intestinal fluid (SIF) containing BSs decreased HT29 cell viability and significantly damaged cellular DNA. However, the genotoxic effect was reversed in the presence of all tested PL samples, while the protective effect against the BS-induced cytotoxicity was observed for native non-hydrolyzed PLs, but was not clearly visible for other samples. This can result from an overlap of other toxic effects such as lipotoxicity or disturbance of cellular redox homeostasis. Taking into account the data obtained, it was proposed that the PLA2 activity decline in the presence of PL oxidation products may be a kind of protective mechanism against rapid release of oxidized FAs characterized by high cytotoxic effect towards intestinal epithelium cells.


Subject(s)
Chickens , Phospholipids , Humans , Animals , Female , Phospholipids/metabolism , Hydrolysis , Chickens/metabolism , Phospholipases A2/toxicity , Phospholipases A2/metabolism , Oxidation-Reduction , Cell Line , Intestinal Mucosa/metabolism
4.
Food Chem ; 389: 133066, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35567862

ABSTRACT

We used global and species-specific peptide markers for a relative quantitative determination of pork and beef in raw and processed meat products made of the two meat species. Four groups of products were prepared (i.e., minced raw meats, sausages, raw and fried burgers) in order to represent products with different extents of food processing. In each group, the products varied in the pork/beef proportions. All products were analysed by multiple reaction monitoring mass spectrometry (MRM-MS) for the presence/concentration of pork- and beef-specific peptide markers, as well as global markers - peptides widely distributed in muscle tissue. The combined MRM-MS analysis of pork-specific peptide HPGDFGADAQGAMSK, beef-specific peptide VLGFHG and global marker LFDLR offered the most reliable validation of declared pork/beef compositions across the whole range of meat products. Our work suggests that a simultaneous analysis of global and species-specific peptide markers can be used for composition authentication in commercial pork/beef products.


Subject(s)
Meat Products , Pork Meat , Red Meat , Animals , Biomarkers/analysis , Cattle , Meat/analysis , Meat Products/analysis , Peptides/analysis , Red Meat/analysis , Swine
5.
Molecules ; 27(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209049

ABSTRACT

In this meta-analysis, we collected 58 publications spanning the last seven decades that reported static in vitro protein gastric digestion results. A number of descriptors of the pepsinolysis process were extracted, including protein type; pepsin activity and concentration; protein concentration; pH; additives; protein form (e.g., 'native', 'emulsion', 'gel', etc.); molecular weight of the protein; treatment; temperature; and half-times (HT) of protein digestion. After careful analysis and the application of statistical techniques and regression models, several general conclusions could be extracted from the data. The protein form to digest the fastest was 'emulsion'. The rate of pepsinolysis in the emulsion was largely independent of the protein type, whereas the gastric digestion of the native protein in the solution was strongly dependent on the protein type. The pepsinolysis was shown to be strongly dependent on the structural components of the proteins digested-specifically, ß-sheet-inhibited and amino acid, leucine, methionine, and proline-promoted digestion. Interestingly, we found that additives included in the digestion mix to alter protein hydrolysis had, in general, a negligible effect in comparison to the clear importance of the protein form or additional treatment. Overall, the findings allowed for the targeted creation of foods for fast or slow protein digestion, depending on the nutritional needs.


Subject(s)
Dietary Proteins/chemistry , Pepsin A/chemistry , Animals , Digestion , Emulsions/chemistry , Food Analysis , Hydrogen-Ion Concentration , Hydrolysis , Milk/chemistry , Protein Hydrolysates
6.
Int J Pharm ; 615: 121488, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35063593

ABSTRACT

Microemulsions are transparent, thermodynamically stable colloidal systems. Over the recent years, they have been increasingly investigated due to their potential as skin delivery vehicles for a wide range of drug molecules. The nanoscale particle size and the specificity of microemulsion components are the main features determining the skin permeation process. However, in order to effectively cross the skin barrier, the active substance itself should also meet a number of requirements, such as relatively small molecular weight, high lipophilicity with certain polarity as well as a specific partition coefficient. This review focuses on recent advancements in topical microemulsion systems related to the transport of active ingredients into the skin, including those with high molecular weight and high polarity. Selected studies have shown that permeation of therapeutic macromolecules can be increased by the correct (i.e. tailored to a specific drug) design of the microemulsion. The degree of skin penetration as well as the kinetics and the site of drug release can be controlled by appropriate qualitative and quantitative selections of penetration promoters (microemulsion components), the structure of microemulsion and its viscosity. The drug-carrier interactions can also affect the effectiveness of microemulsion formulation. These relations have been described and evaluated in this review article.


Subject(s)
Skin Absorption , Skin , Administration, Cutaneous , Drug Delivery Systems , Drug Liberation , Emulsions/metabolism , Excipients/metabolism , Skin/metabolism , Surface-Active Agents/metabolism
7.
Molecules ; 26(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34885858

ABSTRACT

Determination of the cause of a biliary obstruction is often inconclusive from serum analysis alone without further clinical tests. To this end, serum markers as well as the composition of bile of 74 patients with biliary obstructions were determined to improve the diagnoses. The samples were collected from the patients during an endoscopic retrograde cholangiopancreatography (ERCP). The concentration of eight bile salts, specifically sodium cholate, sodium glycocholate, sodium taurocholate, sodium glycodeoxycholate, sodium chenodeoxycholate, sodium glycochenodeoxycholate, sodium taurodeoxycholate, and sodium taurochenodeoxycholate as well as bile cholesterol were determined by HPLC-MS. Serum alanine aminotransferase (ALT), aspartate transaminase (AST), and bilirubin were measured before the ERCP. The aim was to determine a diagnostic factor and gain insights into the influence of serum bilirubin as well as bile salts on diseases. Ratios of conjugated/unconjugated, primary/secondary, and taurine/glycine conjugated bile salts were determined to facilitate the comparison to literature data. Receiver operating characteristic (ROC) curves were determined, and the cut-off values were calculated by determining the point closest to (0,1). It was found that serum bilirubin was a good indicator of the type of biliary obstruction; it was able to differentiate between benign obstructions such as choledocholithiasis (at the concentration of >11 µmol/L) and malignant changes such as pancreatic neoplasms or cholangiocarcinoma (at the concentration of >59 µmol/L). In addition, it was shown that conjugated/unconjugated bile salts confirm the presence of an obstruction. With lower levels of conjugated/unconjugated bile salts the possibility for inflammation and, thus, neoplasms increase.


Subject(s)
Bile Acids and Salts/chemistry , Cholestasis/diagnosis , Aged , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Bilirubin/blood , Cholestasis/blood , Cholesterol/blood , Humans , ROC Curve
8.
Food Res Int ; 145: 110413, 2021 07.
Article in English | MEDLINE | ID: mdl-34112416

ABSTRACT

The gastrointestinal hydrolysis of food proteins has been portrayed in scientific literature to predominantly depend on the activity and specificity of proteolytic enzymes. Human bile has not been considered to facilitate proteolysis in the small intestine, but rather to assist in intestinal lipolysis. However, human bile can potentially influence proteins that are largely resistant to gastric digestion, and which are mainly hydrolysed after they have been transferred to the small intestine. We used purified and food-grade bovine milk ß-lactoglobulin (ßLg) to assess the impact of bile salts (BS) on the in vitro gastrointestinal digestion of this protein. Quantitative analysis showed that the proteolysis rate increased significantly with increasing BS concentration. The effect was consistent regardless of whether individual BS or real human bile samples, varying in BS concentrations, were used. The total BS content of bile was more important than its BS composition in facilitating the proteolysis of ßlg. We also show that the impact of human bile observed during the digestion of purified ßLg and ßLg-rich whey protein isolate can be closely replicated by the use of individual BS mixed with phosphatidylcholine. This could validate simple BS/phosphatidylcholine mixtures as human-relevant substitutes of difficult-to-obtain human bile for in vitro proteolysis studies.


Subject(s)
Bile Acids and Salts , Lactoglobulins , Animals , Bile , Cattle , Digestion , Humans , Lactoglobulins/metabolism , Proteolysis
9.
Article in English | MEDLINE | ID: mdl-33653733

ABSTRACT

OBJECTIVES: Endoscopic biliary drainage is a first-line treatment in patients with unresectable malignant biliary obstruction. In most cases the drainage is conducted using endoscopic retrograde cholangiopancreatography (ERCP). Percutaneous transhepatic biliary drainage or endosonography-guided biliary drainage (EUS-BD) represents therapeutic options after unsuccessful ERCP. Here we report on 2 years experience in the management of patients diagnosed with malignant biliary obstruction using EUS-BD. METHODS: Retrospective data were collected on patients who underwent EUS-BD due to malignant biliary obstruction at our centre between April 2016 and April 2018. Only patients who had two unsuccessful attempts of ERCP prior to EUS-BD were included. We analysed the technical success (ie, creation of anastomosis and successful placement of a stent) and complication rate of EUS-BD, and monitored changes in serum bilirubin and liver function tests after 2 days, and at least 2 weeks, following the procedure. RESULTS: Screening of 1781 ERCP procedures performed in our department during the inclusion period led to the identification of 31 patients (18 women, age range 51-92 years, 58% with pancreatic cancer) who fulfilled the inclusion criteria. Hepaticogastrostomy and choledochoduodenostomy were performed in 12 and 19 patients, respectively. The technical success rate was 97% and the complication rate was 12.9%. EUS-BD resulted in a significant decrease in serum bilirubin (p<0.01). CONCLUSIONS: EUS-BD represents a reasonable therapeutic option after unsuccessful ERCP in patients with malignant biliary obstruction. Possible complications have to be kept in mind and this procedure should be performed at centres experienced in ERCP and EUS.

10.
Molecules ; 26(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498574

ABSTRACT

The efficiency of micellar solubilization is dictated inter alia by the properties of the solubilizate, the type of surfactant, and environmental conditions of the process. We, therefore, hypothesized that using the descriptors of the aforementioned features we can predict the solubilization efficiency, expressed as molar solubilization ratio (MSR). In other words, we aimed at creating a model to find the optimal surfactant and environmental conditions in order to solubilize the substance of interest (oil, drug, etc.). We focused specifically on the solubilization in biosurfactant solutions. We collected data from literature covering the last 38 years and supplemented them with our experimental data for different biosurfactant preparations. Evolutionary algorithm (EA) and kernel support vector machines (KSVM) were used to create predictive relationships. The descriptors of biosurfactant (logPBS, measure of purity), solubilizate (logPsol, molecular volume), and descriptors of conditions of the measurement (T and pH) were used for modelling. We have shown that the MSR can be successfully predicted using EAs, with a mean R2 val of 0.773 ± 0.052. The parameters influencing the solubilization efficiency were ranked upon their significance. This represents the first attempt in literature to predict the MSR with the MSR calculator delivered as a result of our research.


Subject(s)
Glycolipids/chemistry , Solubility , Surface-Active Agents/chemistry , Micelles
11.
Food Res Int ; 138(Pt A): 109752, 2020 12.
Article in English | MEDLINE | ID: mdl-33292935

ABSTRACT

Small intestinal mucus transport of food-derived particulates has not been extensively studied, despite mucus being a barrier nutrients need to cross before absorption. We used complex dispersions of digesta obtained from simulated, dynamic gastrointestinal digestion of yogurt to examine the penetrability of human and porcine mucus to the particles formed of lipolysis products. Quantitative, time-lapse confocal microscopy revealed a sieve-like behaviour of the pig jejunal and ileal mucus. The digesta diffusivity decreased significantly over the first 30 min of mucus penetration, and then remained constant at ca. 5 × 10-12 m2 s-1 (approx. 70% decrease from initial values). A non-significantly different penetrability was recorded for the ileal mucus of adult humans. The digesta diffusion rates in neonatal, jejunal mucus of 2 week old piglets were 5-8 times higher than in the three different types of adult mucus. This is the first report that validates the mucus of fully-grown pigs as a human-relevant substitute for mucus permeation studies of nutrients/bio-actives and/or complex colloidal dispersions (e.g., post-digestion food particulates, orally-administrated delivery systems).


Subject(s)
Intestinal Mucosa , Lipids , Adult , Animals , Diffusion , Digestion , Humans , Mucus , Swine
12.
Sci Rep ; 10(1): 20290, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33219331

ABSTRACT

The gastrointestinal mucus layer represents the last barrier between ingested food or orally administered pharmaceuticals and the mucosal epithelium. This complex gel structure plays an important role in the process of small intestinal absorption. It provides protection against hazardous particles such as bacteria but allows the passage of nutrients and drug molecules towards the intestinal epithelium. In scientific research, mucus from animal sources is usually used to simulate difficult-to-obtain human small intestinal mucus for investigating the intramucus transport of drug delivery systems or food nanoparticles. However, there is a lack of evidence the human mucus can be reliably substituted by animal counterparts for human-relevant transport models. In this report, a procedure for collecting human mucus has been described. More importantly, the permeability characteristics of human and porcine small intestinal mucus secretions to sub-micron sized particles have been compared under simulated intestinal conditions. Negatively charged, 500 nm latex beads were used in multiple-particle tracking experiments to examine the heterogeneity and penetrability of mucus from different sources. Diffusion of the probe particles in adult human ileal mucus and adult pig jejunal and ileal mucus revealed no significant differences in microstructural organisation or microviscosity between the three mucus types (P > 0.05). In contrast to this interspecies similarity, the intraspecies comparison of particle diffusivity in the mucus obtained from adult pigs vs. 2-week old piglets showed better penetrability of the piglet mucus. The mean Stokes-Einstein viscosity of the piglet jejunal mucus was approx. two times lower than the viscosity of the pig jejunal mucus (P < 0.05). All mucus structures were also visualised by scanning electron microscopy. This work validates the use of porcine small intestinal mucus collected from fully-grown pigs for studying colloidal transport of sub-micron sized particles in mucus under conditions mimicking the adult human small intestinal environment.


Subject(s)
Colloids/pharmacokinetics , Drug Carriers/pharmacokinetics , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Adult , Age Factors , Aged , Animals , Animals, Suckling , Colloids/chemistry , Diffusion , Drug Carriers/chemistry , Female , Humans , Intestinal Mucosa/chemistry , Intestinal Mucosa/ultrastructure , Intestine, Small/chemistry , Intestine, Small/ultrastructure , Male , Microscopy, Electron, Scanning , Middle Aged , Models, Animal , Nanoparticles/chemistry , Particle Size , Permeability , Species Specificity , Swine , Viscosity
13.
Adv Colloid Interface Sci ; 274: 102045, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31689682

ABSTRACT

Because of their unusual chemical structure, bile salts (BS) play a fundamental role in intestinal lipid digestion and transport. BS have a planar arrangement of hydrophobic and hydrophilic moieties, which enables the BS molecules to form peculiar self-assembled structures in aqueous solutions. This molecular arrangement also has an influence on specific interactions of BS with lipid molecules and other compounds of ingested food and digestive media. Those comprise the complex scenario in which lipolysis occurs. In this review, we discuss the BS synthesis, composition, bulk interactions and mode of action during lipid digestion and transport. We look specifically into surfactant-related functions of BS that affect lipolysis, such as interactions with dietary fibre and emulsifiers, the interfacial activity in facilitating lipase and colipase anchoring to the lipid substrate interface, and finally the role of BS in the intestinal transport of lipids. Unravelling the roles of BS in the processing of lipids in the gastrointestinal tract requires a detailed analysis of their interactions with different compounds. We provide an update on the most recent findings concerning two areas of BS involvement: lipolysis and intestinal transport. We first explore the interactions of BS with various dietary fibres and food emulsifiers in bulk and at interfaces, as these appear to be key aspects for understanding interactions with digestive media. Next, we explore the interactions of BS with components of the intestinal digestion environment, and the role of BS in displacing material from the oil-water interface and facilitating adsorption of lipase. We look into the process of desorption, solubilisation of lipolysis, products and formation of mixed micelles. Finally, the BS-driven interactions of colloidal particles with the small intestinal mucus layer are considered, providing new findings for the overall assessment of the role of BS in lipid digestion and intestinal transport. This review offers a unique compilation of well-established and most recent studies dealing with the interactions of BS with food emulsifiers, nanoparticles and dietary fibre, as well as with the luminal compounds of the gut, such as lipase-colipase, triglycerides and intestinal mucus. The combined analysis of these complex interactions may provide crucial information on the pattern and extent of lipid digestion. Such knowledge is important for controlling the uptake of dietary lipids or lipophilic pharmaceuticals in the gastrointestinal tract through the engineering of novel food structures or colloidal drug-delivery systems.


Subject(s)
Bile Acids and Salts/metabolism , Lipids/chemistry , Lipolysis , Animals , Bile Acids and Salts/chemistry , Biological Transport , Emulsifying Agents/chemistry , Emulsifying Agents/metabolism , Humans
14.
Sci Rep ; 9(1): 17516, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772308

ABSTRACT

The small intestinal mucus is a complex colloidal system that coats the intestinal mucosa. It allows passage on nutrients/pharmaceuticals from the gut lumen towards the epithelium, whilst preventing it from direct contact with luminal microorganisms. Mucus collected from intestinal tissue is often used in studies looking at inter-mucosal transport of food particulates, drug carriers, etc. However, detaching the highly hydrated native mucus from the tissue and storing it frozen prior to use may disrupt its physiological microstructure, and thus selective barrier properties. Multiple-particle tracking experiments showed that microstructural organisation of native, jejunal mucus depends on its spatial location in the intestinal mucosa. The inter-villus mucus was less heterogeneous than the mucus covering villi tips in the pig model used. Collecting mucus from tissue and subjecting it to freezing and thawing did not significantly affect (P > 0.05) its permeability to model, sub-micron sized particles, and the microviscosity profile of the mucus reflected the overall profiles recorded for the native mucus in the tissue. This implies the method of collecting and storing mucus is a reliable ex vivo treatment for the convenient planning and performing of mucus-permeability studies that aim to mimic physiological conditions of the transport of molecules/particles in native mucus.


Subject(s)
Intestinal Absorption , Intestine, Small/metabolism , Mucus/metabolism , Animals , Intestinal Mucosa/metabolism , Intestinal Mucosa/physiology , Intestine, Small/physiology , Microspheres , Mucus/physiology , Particle Size , Swine , Viscosity
15.
Nat Protoc ; 14(4): 991-1014, 2019 04.
Article in English | MEDLINE | ID: mdl-30886367

ABSTRACT

Developing a mechanistic understanding of the impact of food structure and composition on human health has increasingly involved simulating digestion in the upper gastrointestinal tract. These simulations have used a wide range of different conditions that often have very little physiological relevance, and this impedes the meaningful comparison of results. The standardized protocol presented here is based on an international consensus developed by the COST INFOGEST network. The method is designed to be used with standard laboratory equipment and requires limited experience to encourage a wide range of researchers to adopt it. It is a static digestion method that uses constant ratios of meal to digestive fluids and a constant pH for each step of digestion. This makes the method simple to use but not suitable for simulating digestion kinetics. Using this method, food samples are subjected to sequential oral, gastric and intestinal digestion while parameters such as electrolytes, enzymes, bile, dilution, pH and time of digestion are based on available physiological data. This amended and improved digestion method (INFOGEST 2.0) avoids challenges associated with the original method, such as the inclusion of the oral phase and the use of gastric lipase. The method can be used to assess the endpoints resulting from digestion of foods by analyzing the digestion products (e.g., peptides/amino acids, fatty acids, simple sugars) and evaluating the release of micronutrients from the food matrix. The whole protocol can be completed in ~7 d, including ~5 d required for the determination of enzyme activities.


Subject(s)
Biomimetic Materials/metabolism , Food Ingredients/analysis , Intestines/enzymology , Models, Biological , Mouth/enzymology , Stomach/enzymology , Amino Acids/analysis , Amino Acids/chemistry , Bile/enzymology , Biomimetic Materials/chemistry , Digestion/physiology , Eating/physiology , Enzyme Assays/standards , Fatty Acids/analysis , Fatty Acids/chemistry , Food , Gastric Juice/enzymology , Humans , Hydrogen-Ion Concentration , Hydrolysis , Oligosaccharides/analysis , Oligosaccharides/chemistry , Peptide Fragments/analysis , Peptide Fragments/chemistry , Saliva/enzymology
16.
Food Chem ; 283: 367-374, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30722885

ABSTRACT

The abundance of protein markers in different types of meat cuts was explored in the context of authentication of raw meat (pork, beef and chicken) and processed meat products. Peptides originating from myoglobin (Mb) and myosin (My) were analyzed using multiple reaction monitoring mass spectrometry (MRM-MS). Analytical protocol was optimized for good repeatability (CV < 10%) and high sensitivity. The MS signal intensity of Mb marker peptides in raw pork depended significantly on the cut type (e.g. ham vs knuckle). Importantly, a similar pattern in the abundance of the marker peptides was found for processed meat products made of different types of pork cuts, despite the food processing applied. This suggests the protocol can be used for authentication of raw pork cuts and processed products made of different cuts of pork. More uniform contents of Mb markers were found in raw beef cuts, and for My markers in raw chicken cuts.


Subject(s)
Meat Products/analysis , Meat/analysis , Peptides/analysis , Animals , Biomarkers/analysis , Cattle , Chickens , Food Handling , Mass Spectrometry , Myoglobin/metabolism , Myosins/metabolism , Swine
17.
Food Hydrocoll ; 52: 749-755, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26726279

ABSTRACT

In the small intestine the nature of the environment leads to a highly heterogeneous mucus layer primarily composed of the MUC2 mucin. We set out to investigate whether the soluble dietary fibre sodium alginate could alter the permeability of the mucus layer. The alginate was shown to freely diffuse into the mucus and to have minimal effect on the bulk rheology when added at concentrations below 0.1%. Despite this lack of interaction between the mucin and alginate, the addition of alginate had a marked effect on the diffusion of 500 nm probe particles, which decreased as a function of increasing alginate concentration. Finally, we passed a protein stabilised emulsion through a simulation of oral, gastric and small intestinal digestion. We subsequently showed that the addition of 0.1% alginate to porcine intestinal mucus decreased the diffusion of fluorescently labelled lipid present in the emulsion digesta. This reduction may be sufficient to reduce problems associated with high rates of lipid absorption such as hyperlipidaemia.

18.
Colloids Surf B Biointerfaces ; 135: 73-80, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26241918

ABSTRACT

Mucus provides a barrier to bacteria and toxins while allowing nutrient absorption and waste transport. Unlike colonic mucus, small intestinal mucus structure is poorly understood. This study aimed to provide evidence for a continuous, structured mucus layer and assess the diffusion of different sized particles through it. Mucus structure was assessed by histology and immunohistochemistry. Ultra-structure was assessed by scanning electron microscopy. Tracking of 100 nm and 500 nm latex beads was conducted using ex vivo porcine mucus. The porcine jejunum and ileum were filled with mucus. Layered MUC2 staining was visible throughout the small intestine, covering villus tips. Scanning electron microscopy showed net-like mucin sheets covering villi (211 ± 7 nm pore diameter). Particle tracking of 100 nm latex beads, showed no inhibition of diffusion through mucus while 500 nm beads displayed limited diffusion. These results suggest a continuous mucus layer exists throughout the small intestine, which is highly stratified adjacent to the epithelium. The network observed is consistent with previous observations and correlates with stratified MUC2 staining. Mucin pore size is consistent with free diffusion of 100 nm and limited diffusion of 500 nm particles. Small Intestinal mucus structure has important implications for drug delivery systems and prevention and treatment of conditions like mucositis and inflammatory bowel disease.


Subject(s)
Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Mucus/metabolism , Nanoparticles/metabolism , Animals , Ileum/metabolism , Intestinal Absorption , Intestinal Mucosa/chemistry , Intestinal Mucosa/ultrastructure , Intestine, Small/chemistry , Intestine, Small/ultrastructure , Jejunum/metabolism , Mice , Microspheres , Mucin-2/metabolism , Mucus/chemistry , Particle Size , Swine
19.
Br J Nutr ; 114(3): 418-29, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26159899

ABSTRACT

The physico-chemical and interfacial properties of fat emulsions influence lipid digestion and may affect postprandial responses. The aim of the present study was to determine the effects of the modification of the interfacial layer of a fat emulsion by cross-linking on postprandial metabolic and appetite responses. A total of fifteen healthy individuals (26.5 (sem 6.9) years and BMI 21.9 (sem 2.0) kg/m2) participated in a cross-over design experiment in which they consumed two isoenergetic (1924 kJ (460 kcal)) and isovolumic (250 g) emulsions stabilised with either sodium caseinate (Cas) or transglutaminase-cross-linked sodium caseinate (Cas-TG) in a randomised order. Blood samples were collected from the individuals at baseline and for 6 h postprandially for the determination of serum TAG and plasma NEFA, cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), glucose and insulin responses. Appetite was assessed using visual analogue scales. Postprandial TAG and NEFA responses and gastric emptying (GE) rates were comparable between the emulsions. CCK increased more after the ingestion of Cas-TG than after the ingestion of Cas (P< 0.05), while GLP-1 responses did not differ between the two test emulsions. Glucose and insulin profiles were lower after consuming Cas-TG than after consuming Cas (P< 0.05). The overall insulin, glucose and CCK responses, expressed as areas above/under the curve, did not differ significantly between the Cas and Cas-TG meal conditions. Satiety ratings were reduced and hunger, desire to eat and thirst ratings increased more after the ingestion of Cas-TG than after the ingestion of Cas (P< 0.05). The present results suggest that even a subtle structural modification of the interfacial layer of a fat emulsion can alter the early postprandial profiles of glucose, insulin, CCK, appetite and satiety through decreased protein digestion without affecting significantly on GE or overall lipid digestion.


Subject(s)
Appetite/drug effects , Caseins/chemistry , Cross-Linking Reagents , Emulsions/administration & dosage , Transglutaminases/metabolism , Adult , Blood Glucose/analysis , Body Mass Index , Caseins/metabolism , Cholecystokinin/blood , Digestion , Emulsions/chemistry , Fatty Acids, Nonesterified/blood , Female , Gastric Emptying/drug effects , Glucagon-Like Peptide 1/blood , Humans , Insulin/blood , Lipid Metabolism/drug effects , Male , Middle Aged , Postprandial Period , Satiation/drug effects , Triglycerides/blood
20.
PLoS One ; 9(4): e95274, 2014.
Article in English | MEDLINE | ID: mdl-24755941

ABSTRACT

The final boundary between digested food and the cells that take up nutrients in the small intestine is a protective layer of mucus. In this work, the microstructural organization and permeability of the intestinal mucus have been determined under conditions simulating those of infant and adult human small intestines. As a model, we used the mucus from the proximal (jejunal) small intestines of piglets and adult pigs. Confocal microscopy of both unfixed and fixed mucosal tissue showed mucus lining the entire jejunal epithelium. The mucus contained DNA from shed epithelial cells at different stages of degradation, with higher amounts of DNA found in the adult pig. The pig mucus comprised a coherent network of mucin and DNA with higher viscosity than the more heterogeneous piglet mucus, which resulted in increased permeability of the latter to 500-nm and 1-µm latex beads. Multiple-particle tracking experiments revealed that diffusion of the probe particles was considerably enhanced after treating mucus with DNase. The fraction of diffusive 500-nm probe particles increased in the pig mucus from 0.6% to 64% and in the piglet mucus from ca. 30% to 77% after the treatment. This suggests that extracellular DNA can significantly contribute to the microrheology and barrier properties of the intestinal mucus layer. To our knowledge, this is the first time that the structure and permeability of the small intestinal mucus have been compared between different age groups and the contribution of extracellular DNA highlighted. The results help to define rules governing colloidal transport in the developing small intestine. These are required for engineering orally administered pharmaceutical preparations with improved delivery, as well as for fabricating novel foods with enhanced nutritional quality or for controlled calorie uptake.


Subject(s)
Aging/physiology , DNA/metabolism , Extracellular Space/metabolism , Intestine, Small/physiology , Mucus/metabolism , Animals , Biological Transport , Diffusion , Intestinal Mucosa/cytology , Intestinal Mucosa/physiology , Intestine, Small/cytology , Rheology , Static Electricity , Sus scrofa , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...