Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Article in English | MEDLINE | ID: mdl-38607317

ABSTRACT

This pilot study aimed to evaluate the immunomodulatory effect of placental mesenchymal stem/stromal cells (MSCs) on peripheral blood mononuclear cells (PBMCs) from patients with hidradenitis suppurativa (HS). Blood samples were collected from 3 healthy and 3 patients with HS. Isolated PBMCs were stained with carboxyfluorescein succinimidyl ester (CFSE) and stimulated with phorbol 12-myristate 13-acetate (PMA)/Ionomycin solution. The PBMCs of patients with HS were co-cultured with naïve MSCs (n-MSCs), activated with tumor necrosis factor (TNF)-α (10 ng/mL) and interferon (IFN)-γ (10 ng/mL) MSCs (a-MSCs), or adalimumab (30 µg/mL). The division index (proliferation inhibition) of PBMCs was analyzed by flow cytometry using the Proliferation Modeling tool after 5 days of coculture. The relative inflammatory gene expression dynamics and cytokine secretion were quantified in triplicate using real-time polymerase chain reaction (PCR) and Luminex assays. PBMCs from the HS control group showed statistically significant increases in interleukin (IL)-6 and IFN-γ cytokine concentrations and IL-17A gene expression when compared with healthy subjects. Statistically significant reduction of the division index was found in the a-MSCs group (P = 0.04). Also, the Luminex assay revealed significantly reduced proinflammatory cytokine concentrations of IL-9 (P = 0.022) and IL-17A (P = 0.022) in the a-MSCs group with the same trend of numerical lowering in n-MSCs group when compared to HS control. The results of real-time PCR revealed a numerical increase in the expression of the IL-1ß, IL-36α, and TNF-α genes in both the a-MSCs and n-MSCs groups compared with the HS control. In conclusion, our findings suggest that MSCs can effectively curb PBMCs proliferation and suppress the production of inflammatory cytokines. Moreover, the preactivation of MSCs with IFN-γ and TNF-α before use can enhance their therapeutic effectiveness. Nevertheless, a larger sample size is imperative to validate these results.

2.
Clin Kidney J ; 16(12): 2365-2377, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045996

ABSTRACT

People living with chronic kidney disease (CKD) frequently suffer from mild cognitive impairment and/or other neurocognitive disorders. This review in two parts will focus on adverse drug reactions resulting in cognitive impairment as a potentially modifiable risk factor in CKD patients. Many patients with CKD have a substantial burden of comorbidities leading to polypharmacy. A recent study found that patients seen by nephrologists were the most complex to treat because of their high number of comorbidities and medications. Due to polypharmacy, these patients may experience a wide range of adverse drug reactions. Along with CKD progression, the accumulation of uremic toxins may lead to blood-brain barrier (BBB) disruption and pharmacokinetic alterations, increasing the risk of adverse reactions affecting the central nervous system (CNS). In patients on dialysis, the excretion of drugs that depend on kidney function is severely reduced such that adverse and toxic levels of a drug or its metabolites may be reached at relatively low doses, unless dosing is adjusted. This first review will discuss how CKD represents a risk factor for adverse drug reactions affecting the CNS via (i) BBB disruption associated with CKD and (ii) the impact of reduced kidney function and dialysis itself on drug pharmacokinetics.

3.
Cells ; 12(23)2023 11 29.
Article in English | MEDLINE | ID: mdl-38067158

ABSTRACT

This study investigates the therapeutic potential of human placental mesenchymal stem cells (P-MSCs) and their extracellular vesicles (EVs) in a murine model of acute respiratory distress syndrome (ARDS), a condition with growing relevance due to its association with severe COVID-19. We induced ARDS-like lung injury in mice using intranasal LPS instillation and evaluated histological changes, neutrophil accumulation via immunohistochemistry, bronchoalveolar lavage fluid cell count, total protein, and cytokine concentration, as well as lung gene expression changes at three time points: 24, 72, and 168 h. We found that both P-MSCs and EV treatments reduced the histological evidence of lung injury, decreased neutrophil infiltration, and improved alveolar barrier integrity. Analyses of cytokines and gene expression revealed that both treatments accelerated inflammation resolution in lung tissue. Biodistribution studies indicated negligible cell engraftment, suggesting that intraperitoneal P-MSC therapy functions mostly through soluble factors. Overall, both P-MSC and EV therapy ameliorated LPS-induced lung injury. Notably, at the tested dose, EV therapy was more effective than P-MSCs in reducing most aspects of lung injury.


Subject(s)
Extracellular Vesicles , Lung Injury , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Pregnancy , Humans , Animals , Female , Mice , Lung Injury/therapy , Disease Models, Animal , Lipopolysaccharides/metabolism , Tissue Distribution , Placenta/metabolism , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/metabolism , Extracellular Vesicles/metabolism , Cytokines/metabolism , Mesenchymal Stem Cells/metabolism
4.
Medicina (Kaunas) ; 60(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38256324

ABSTRACT

Background and Objectives: To date, the therapeutic potential of skeletal muscle-derived stem/progenitor cells (MDSPCs) for acute kidney injury (AKI) has only been evaluated by our research group. We aimed to compare MDSPCs with bone marrow mesenchymal stem cells (BM-MSCs) and evaluate their feasibility for the treatment of AKI. Materials and Methods: Rats were randomly assigned to four study groups: control, GM (gentamicin) group, GM+MDSPCs, and GM+BM-MSCs. AKI was induced by gentamicin (80 mg/kg/day; i.p.) for 7 consecutive days. MDSPCs and BM-MSCs were injected 24 h after the last gentamicin injection. Kidney parameters were determined on days 0, 8, 14, 21, and 35. Results: MDSPCs and BM-MSCs accelerated functional kidney recovery, as reflected by significantly lower serum creatinine levels and renal injury score, higher urinary creatinine and creatinine clearance levels (p < 0.05), lower TUNEL-positive cell number, and decreased KIM-1 and NGAL secretion in comparison to the non-treated AKI group. There was no significant difference in any parameters between the MDSPCs and BM-MSCs groups (p > 0.05). Conclusions: MDSPCs and BM-MSCs can migrate and incorporate into injured renal tissue, resulting in a beneficial impact on functional and morphological kidney recovery, which is likely mediated by the secretion of paracrine factors and an anti-apoptotic effect. MDSPCs were found to be non-inferior to BM-MSCs and therefore can be considered as a potential candidate strategy for the treatment of AKI.


Subject(s)
Acute Kidney Injury , Mesenchymal Stem Cells , Animals , Rats , Creatinine , Acute Kidney Injury/therapy , Gentamicins , Muscles
5.
Stem Cell Reports ; 16(8): 1847-1852, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34329597

ABSTRACT

Regenerative medicine has great potential. The pace of scientific advance is exciting and the medical opportunities for regeneration and repair may be transformative. However, concerns continue to grow, relating to problems caused both by unscrupulous private clinics offering unregulated therapies based on little or no evidence and by premature regulatory approval on the basis of insufficient scientific rationale and clinical evidence. An initiative by the InterAcademy Partnership convened experts worldwide to identify opportunities and challenges, with a focus on stem cells. This was designed to be inclusive and consensus outputs reflected the diversity of the global research population. Among issues addressed for supporting research and innovation while protecting patients were ethical assessment; pre-clinical and clinical research; regulatory authorization and medicines access; and engagement with patients, policy makers, and the public. The InterAcademy Partnership (IAP) identified options for action for sharing good practice and building collaboration within the scientific community and with other stakeholders worldwide.


Subject(s)
Biomedical Research/methods , Regenerative Medicine/methods , Research Design , Stem Cells/cytology , Animals , Biomedical Research/organization & administration , Biomedical Research/trends , Cell- and Tissue-Based Therapy/methods , Cell- and Tissue-Based Therapy/trends , Humans , Information Dissemination/methods , Internationality , Regenerative Medicine/organization & administration , Regenerative Medicine/trends , Stem Cells/metabolism
6.
Eur J Clin Pharmacol ; 77(8): 1209-1218, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33624120

ABSTRACT

PURPOSE: Sharing and developing digital educational resources and open educational resources has been proposed as a way to harmonize and improve clinical pharmacology and therapeutics (CPT) education in European medical schools. Previous research, however, has shown that there are barriers to the adoption and implementation of open educational resources. The aim of this study was to determine perceived opportunities and barriers to the use and creation of open educational resources among European CPT teachers and possible solutions for these barriers. METHODS: CPT teachers of British and EU medical schools completed an online survey. Opportunities and challenges were identified by thematic analyses and subsequently discussed in an international consensus meeting. RESULTS: Data from 99 CPT teachers from 95 medical schools were analysed. Thirty teachers (30.3%) shared or collaboratively produced digital educational resources. All teachers foresaw opportunities in the more active use of open educational resources, including improving the quality of their teaching. The challenges reported were language barriers, local differences, lack of time, technological issues, difficulties with quality management, and copyright restrictions. Practical solutions for these challenges were discussed and include a peer review system, clear indexing, and use of copyright licenses that permit adaptation of resources. CONCLUSION: Key challenges to making greater use of CPT open educational resources are a limited applicability of such resources due to language and local differences and quality concerns. These challenges may be resolved by relatively simple measures, such as allowing adaptation and translation of resources and a peer review system.


Subject(s)
Pharmacology, Clinical/education , Schools, Medical/organization & administration , Teaching Materials/supply & distribution , Cooperative Behavior , Copyright , Europe , Humans , Pharmacology, Clinical/standards , Quality Improvement , Schools, Medical/standards , Teaching Materials/standards
7.
Antibiotics (Basel) ; 10(2)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557261

ABSTRACT

The glomerular filtration rate (GFR), according to which the drug dose for patients with chronic kidney disease (CKD) is adjusted, is computed with estimators (eGFR) that are developed specifically for CKD. These particular types of estimators are also used in population pharmacokinetic (pop PK) modelling in drug development. Similar approaches without scientific validation have been proposed for patients with acute kidney injury (AKI), yet it is uncertain which specific eGFR should be used for drug dosing or in pop PK models in patients with AKI. In our study, we included 34 patients with AKI and vancomycin (VCM) treatment, and we built both individual PK and pop PK (non-linear mixed-effects, one-compartment) models to see which eGFR estimator is the best covariate. In these models different eGFRs (Cockcroft-Gault, MDRD, CKD-EPI 2009, Jelliffe and Jelliffe, Chen et al., and Yashiro et al. 2013) were used. We included six additional patients to validate the final pop PK model. All eGFRs underrate the true renal clearance in the AKI, so we created pop PK models for VCM dosing in AKI with all eGFRs, to discover that the most accurate model was the one with the Cockcroft-Gault estimator. Since the eGFRs underestimate the true renal clearance in AKI, they are inaccurate for clinical drug dosing decisions, with the exception of the Cockcroft-Gault one, which is appropriate for the pop PK models intended for drug development purposes in AKI.

8.
Cartilage ; 13(2_suppl): 615S-625S, 2021 12.
Article in English | MEDLINE | ID: mdl-31072136

ABSTRACT

OBJECTIVE: The objective of this study was to assess a novel 3D microstructured scaffold seeded with allogeneic chondrocytes (cells) in a rabbit osteochondral defect model. DESIGN: Direct laser writing lithography in pre-polymers was employed to fabricate custom silicon-zirconium containing hybrid organic-inorganic (HOI) polymer SZ2080 scaffolds of a predefined morphology. Hexagon-pored HOI scaffolds were seeded with chondrocytes (cells), and tissue-engineered cartilage biocompatibility, potency, efficacy, and shelf-life in vitro was assessed by morphological, ELISA (enzyme-linked immunosorbent assay) and PCR (polymerase chain reaction) analysis. Osteochondral defect was created in the weight-bearing area of medial femoral condyle for in vivo study. Polymerized fibrin was added to every defect of 5 experimental groups. Cartilage repair was analyzed after 6 months using macroscopical (Oswestry Arthroscopy Score [OAS]), histological, and electromechanical quantitative potential (QP) scores. Collagen scaffold (CS) was used as a positive comparator for in vitro and in vivo studies. RESULTS: Type II collagen gene upregulation and protein secretion was maintained up to 8 days in seeded HOI. In vivo analysis revealed improvement in all scaffold treatment groups. For the first time, electromechanical properties of a cellular-based scaffold were analyzed in a preclinical study. Cell addition did not enhance OAS but improved histological and QP scores in HOI groups. CONCLUSIONS: HOI material is biocompatible for up to 8 days in vitro and is supportive of cartilage formation at 6 months in vivo. Electromechanical measurement offers a reliable quality assessment of repaired cartilage.


Subject(s)
Chondrocytes , Tissue Scaffolds , Animals , Chondrocytes/metabolism , Lasers , Rabbits , Tissue Engineering , Writing
9.
Br J Clin Pharmacol ; 87(3): 1001-1011, 2021 03.
Article in English | MEDLINE | ID: mdl-32638391

ABSTRACT

AIM: Improvement and harmonization of European clinical pharmacology and therapeutics (CPT) education is urgently required. Because digital educational resources can be easily shared, adapted to local situations and re-used widely across a variety of educational systems, they may be ideally suited for this purpose. METHODS: With a cross-sectional survey among principal CPT teachers in 279 out of 304 European medical schools, an overview and classification of digital resources was compiled. RESULTS: Teachers from 95 (34%) medical schools in 26 of 28 EU countries responded, 66 (70%) of whom used digital educational resources in their CPT curriculum. A total of 89 of such resources were described in detail, including e-learning (24%), simulators to teach pharmacokinetics and/or pharmacodynamics (10%), virtual patients (8%), and serious games (5%). Together, these resources covered 235 knowledge-based learning objectives, 88 skills, and 13 attitudes. Only one third (27) of the resources were in-part or totally free and only two were licensed open educational resources (free to use, distribute and adapt). A narrative overview of the largest, free and most novel resources is given. CONCLUSION: Digital educational resources, ranging from e-learning to virtual patients and games, are widely used for CPT education in EU medical schools. Learning objectives are based largely on knowledge rather than skills or attitudes. This may be improved by including more real-life clinical case scenarios. Moreover, the majority of resources are neither free nor open. Therefore, with a view to harmonizing international CPT education, more needs to be learned about why CPT teachers are not currently sharing their educational materials.


Subject(s)
Pharmacology, Clinical , Cross-Sectional Studies , Curriculum , Humans , Learning , Pharmacology, Clinical/education , Schools, Medical
11.
Int J Antimicrob Agents ; 54(3): 375-379, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31075400

ABSTRACT

Little is known about undergraduate education on antibiotic prescribing in Europe and even less about the antibiotic prescribing skills of nearly-graduated medical students. This study aimed to evaluate the antibiotic prescribing skills of final-year medical students across Europe and the education they received during medical training. In a cross-sectional study, final-year medical students from 17 medical schools in 15 European countries were asked to prescribe for two written case reports of infectious diseases (acute bronchitis and community-acquired pneumonia). The appropriateness of antimicrobial therapy was determined using a scoring form based on local guidelines. Teachers from each medical school were asked to complete a standardised questionnaire about the teaching and assessment of undergraduate education on antibiotic use. In total, 856 final-year medical students (95.6%) completed the assessment and 16 teachers (94.1%) completed the questionnaire. Overall, 52.7% (range 26-83%) of the 1.683 therapies prescribed were considered appropriate. The mean number of contact hours for undergraduate education on antimicrobials was 25.6 (range 2-90). Differences in education styles were found to have a significant impact on students' performance, with a problem-based learning style being associated with more appropriate antimicrobial prescribing than a traditional learning style (46.0% vs. 22.9%; P < 0.01). Although there are differences between medical schools, final-year medical students in Europe lack prescribing skills for two common infectious diseases, possibly because of inadequate undergraduate education on antibiotic use and general prescribing. To improve students' skills, interactive teaching methods such as prescribing for simulated and real patients should be used.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Practice Patterns, Physicians'/statistics & numerical data , Professional Competence/statistics & numerical data , Students, Medical , Cross-Sectional Studies , Europe , Humans
12.
Front Med (Lausanne) ; 5: 158, 2018.
Article in English | MEDLINE | ID: mdl-29911104

ABSTRACT

Advanced therapy medicinal products (ATMPs), i.e., cell and gene therapy products, is a rapidly evolving field of therapeutic development. A significant proportion of the products are being developed by academia or small/medium-sized enterprises (SMEs). The many challenges in translation posed by this class of products include aspects covering: manufacturing, non-clinical development plan as relevant to clinical trial, marketing authorization, and reimbursement. In this context, the term translation refers to the relevance of non-clinical data in relation to how it impacts on appropriate and efficient clinical development. In order to successfully overcome these challenges, a clear understanding of the requirements and expectations of all the stakeholders is critical. This article aims to cover the potential challenges related to such translation and suggested approaches to find solutions based on experience and learnings from the perspective of European Union. While commercial challenges have a significant impact on the ATMPs in general, it is considered outside the scope of this article. However, by adopting a strong scientific basis for translation as suggested in this article, it is likely such an approach would help rather than harm successful real world clinical use of ATMPs.

13.
Clin Pharmacol Ther ; 104(2): 317-325, 2018 08.
Article in English | MEDLINE | ID: mdl-29205299

ABSTRACT

Harmonizing clinical pharmacology and therapeutics (CPT) education in Europe is necessary to ensure that the prescribing competency of future doctors is of a uniform high standard. As there are currently no uniform requirements, our aim was to achieve consensus on key learning outcomes for undergraduate CPT education in Europe. We used a modified Delphi method consisting of three questionnaire rounds and a panel meeting. A total of 129 experts from 27 European countries were asked to rate 307 learning outcomes. In all, 92 experts (71%) completed all three questionnaire rounds, and 33 experts (26%) attended the meeting. 232 learning outcomes from the original list, 15 newly suggested and 5 rephrased outcomes were included. These 252 learning outcomes should be included in undergraduate CPT curricula to ensure that European graduates are able to prescribe safely and effectively. We provide a blueprint of a European core curriculum describing when and how the learning outcomes might be acquired.


Subject(s)
Drug Prescriptions , Education, Medical, Undergraduate/methods , Educational Measurement/methods , Learning , Pharmacology, Clinical/education , Consensus , Curriculum , Delphi Technique , Drug Prescriptions/standards , Education, Medical, Undergraduate/standards , Educational Measurement/standards , Educational Status , Europe , Humans , Pharmacology, Clinical/standards , Surveys and Questionnaires
15.
Pharmacol Res ; 113(Pt B): 723-730, 2016 11.
Article in English | MEDLINE | ID: mdl-27168226

ABSTRACT

This Info article offers an overview on the main historical facts and the current perspectives of the scientific and educational competence in field of pharmacology in three European countries on Baltic sea East coast: Estonia, Latvia and Lithuania. The research areas have changed constantly due to economical and political reasons during the last 200 years and today do cover quite different pharmacological areas in each of Baltic countries and are recognized internationally. Today the main topics of studies in Estonia are the pharmacology of neurodegenerative diseases, mood disorders and brain plasticity; the role of mitochondria in neurodegenerative diseases, and the epigenetics of drug dependence. In Latvia, the primary research areas include molecular, neuropharmacology, particularly search for novel medicines capable to halt neurodegenerative diseases as well as cardiovascular pharmacology. In Lithuania the main focus is on clinical pharmacology, rational use of drugs, pharmacoepidemiology and pharmacoeconomy, in experimental pharmacology on regenerative medicine and nephropharmacology. All three countries have their own active Societies of Pharmacology.


Subject(s)
Pharmacology/education , Estonia , Humans , Latvia , Lithuania
16.
Stem Cells Int ; 2016: 9618480, 2016.
Article in English | MEDLINE | ID: mdl-27069485

ABSTRACT

Skeletal muscle-derived stem/progenitor cells (MDSPCs) have been thoroughly investigated and already used in preclinical studies. However, therapeutic potential of MDSPCs isolated using preplate isolation technique for acute kidney injury (AKI) has not been evaluated. We aimed to characterize rat MDSPCs, compare them with bone marrow mesenchymal stem cells (BM-MSCs), and evaluate the feasibility of MDSPCs therapy for gentamicin-induced AKI in rats. We have isolated and characterized rat MDSPCs and BM-MSCs. Characteristics of rat BM-MSCs and MDSPCs were assessed by population doubling time, flow cytometry, immunofluorescence staining, RT-PCR, and multipotent differentiation capacity. Gentamicin-induced AKI model in rat was used to examine MDSPCs therapeutic effect. Physiological and histological kidney parameters were determined. MDSPCs exhibited similar immunophenotype, stem cell gene expression, and multilineage differentiation capacities as BM-MSCs, but they demonstrated higher proliferation rate. Single intravenous MDSPCs injection accelerated functional and morphological kidney recovery, as reflected by significantly lower serum creatinine levels, renal injury score, higher urinary creatinine, and GFR levels. PKH-26-labeled MDSPCs were identified within renal cortex 1 and 2 weeks after cell administration, indicating MDSPCs capacity to migrate and populate renal tissue. In conclusion, MDSPCs are capable of mediating functional and histological kidney recovery and can be considered as potential strategy for AKI treatment.

17.
Pharmacol Res ; 113(Pt B): 802-807, 2016 11.
Article in English | MEDLINE | ID: mdl-27001227

ABSTRACT

Regenerative pharmacology and advanced therapy medicinal products is a relatively new and challenging field in drug development. Acute kidney injury (AKI) is a common clinical condition in nephrology with increasing incidence and high mortality rate. During the last few decades, researchers have been eagerly trying to find novel therapeutic strategies for AKI treatment, including advanced pharmacological therapies using mesenchymal stem cells (MSCs). Several types of MSCs have been thoroughly investigated, including bone marrow, adipose derived and umbilical cord blood MSCs and shown promising results in kidney repair. Research has demonstrated, that MSCs exert their effect through reduction of apoptosis, increased production of growth factors, suppression of oxidative stress and inflammatory processes, promotion of renal tubular cell proliferation, as well as by migration and direct incorporation into the renal tissue. Skeletal muscle-derived stem/progenitor cells (MDSPCs) are mesenchymal stem cell lineage of multipotent cells, demonstrating long-term proliferation, high self-renewal capacities, and ability to enhance endogenous tissue repair. The capacity of MDSPCs to regenerate a variety of different tissues following acute injury or destructive tissue diseases have been demonstrated in preclinical and clinical studies. MDSPCs were also reported to promote endogenous tissue repair via paracrine pathway. Considering advantageous properties of MDSPCs, the administration of these cells might be considered as a potential strategy for the treatment of AKI. However, to date, the therapeutic effect of MDSPCs for renal regeneration has not been investigated. This review reflects the current development in AKI treatment using different types of MSCs and the pilot results of the experimental study in vivo using a novel type of stem cells - MDSPCs for the treatment of gentamicin-induced AKI.


Subject(s)
Acute Kidney Injury/physiopathology , Acute Kidney Injury/therapy , Kidney/physiology , Muscle, Skeletal/physiology , Regeneration/physiology , Satellite Cells, Skeletal Muscle/physiology , Stem Cells/physiology , Animals , Humans , Mesenchymal Stem Cells
18.
Pharmacol Res ; 113(Pt B): 823-832, 2016 11.
Article in English | MEDLINE | ID: mdl-26926094

ABSTRACT

Legislative requirements for the quality of pharmacological agents underwent certain evolution when new type of therapies emerged. This relates to cell based medicines, such as tissue engineered cartilage products (TECP) which are increasingly developed as new modalities for widely prevalent orthopaedic disorders. Although quality measures for TECP are subject to the same general regulatory quality requirements, combination of cellular and scaffold substances requires definition of specific characteristics in vitro that are highly relevant to potency and efficacy of the newly designed medicinal product. One of the specific issues in designing cell based medicines is the fact that the biological activity of active substance, or cells, usually is altered after seeding them on a three-dimensional scaffold. Newly acquired features of the TECP are influenced by chemical, physical and mechanical characteristics of the scaffolds. A vast array of analytical methods has been employed to measure efficacy and potency of TECP in cartilage regeneration studies in vitro. Designing specific physical characteristics of scaffolds may become essential part influencing pharmacological activity of cell based medicinal products, and discern TECP from typical pharmacological products. As an example, increasingly growing popularity of three-dimensional printing that utilizes direct laser writing technique provides an opportunity to improve efficacy of the final TECP. This review is intended to provide brief summary of current approaches used to characterize cells and scaffolds in vitro before and after combination into TECP. Validating TECP as pharmacological agents with unique biological and physical characteristics may broaden their clinical application.


Subject(s)
Cartilage/physiology , Animals , Humans , Regeneration/physiology , Tissue Engineering/methods , Tissue Scaffolds
19.
Eur J Heart Fail ; 18(2): 133-41, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26470631

ABSTRACT

In the past decade, novel cell-based products have been studied in patients with acute and chronic cardiac disease to assess whether these therapies are efficacious in improving heart function and preventing the development of end-stage heart failure. Cardiac indications studied include acute myocardial infarction (AMI), refractory angina, and chronic heart failure (CHF). Increased clinical activity, experience, and multiple challenges faced by developers have been recognized at the regulatory level. In May 2014, the Committee for Advanced Therapies (CAT) discussed in an expert meeting various cell-based medicinal products developed for cardiac repair, with a focus on non-manipulated bone marrow cells, sorted bone marrow or apheresis, and expanded cells, applied to patients with AMI or CHF. The intention was to share information, both scientific and regulatory, and to examine the challenges and opportunities in this field. These aspects were considered from the quality, and non-clinical and clinical perspectives, including current imaging techniques, with a focus on AMI and CHF. The scope of this overview is to present the European regulatory viewpoint on cell-based therapies for cardiac repair in the context of scientific observations.


Subject(s)
Cell Transplantation/methods , Heart Failure/therapy , Heart/physiology , Myocardial Infarction/therapy , Regeneration , Animals , Disease Models, Animal , Europe , Heart Failure/diagnosis , Humans , Myocardial Infarction/diagnosis
20.
Biofabrication ; 7(1): 015015, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25797444

ABSTRACT

Over the last decade DLW employing ultrafast pulsed lasers has become a well-established technique for the creation of custom-made free-form three-dimensional (3D) microscaffolds out of a variety of materials ranging from proteins to biocompatible glasses. Its potential applications for manufacturing a patient's specific scaffold seem unlimited in terms of spatial resolution and geometry complexity. However, despite few exceptions in which live cells or primitive organisms were encapsulated into a polymer matrix, no demonstration of an in vivo study case of scaffolds generated with the use of such a method was performed. Here, we report a preclinical study of 3D artificial microstructured scaffolds out of hybrid organic-inorganic (HOI) material SZ2080 fabricated using the DLW technique. The created 2.1 × 2.1 × 0.21 mm(3) membrane constructs are tested both in vitro by growing isolated allogeneic rabbit chondrocytes (Cho) and in vivo by implanting them into rabbit organisms for one, three and six months. An ex vivo histological examination shows that certain pore geometry and the pre-growing of Cho prior to implantation significantly improves the performance of the created 3D scaffolds. The achieved biocompatibility is comparable to the commercially available collagen membranes. The successful outcome of this study supports the idea that hexagonal-pore-shaped HOI microstructured scaffolds in combination with Cho seeding may be successfully implemented for cartilage tissue engineering.


Subject(s)
Biocompatible Materials/pharmacology , Cartilage/physiology , Lasers , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cartilage/drug effects , Cell Shape/drug effects , Cell Survival/drug effects , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/ultrastructure , Collagen Type II/genetics , Collagen Type II/metabolism , Collagen Type X/genetics , Collagen Type X/metabolism , Gene Expression Regulation/drug effects , Male , Membranes , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rabbits , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...