Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Aquat Organ ; 155: 125-140, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37706643

ABSTRACT

Improving our understanding of the effects of satellite tags on large whales is a critical step in ongoing tag development to minimise potential health effects whilst addressing important research questions that enhance conservation management policy. In 2014, satellite tags were deployed on 9 female southern right whales Eubalaena australis accompanied by a calf off Australia. Photo-identification resights (n = 48) of 4 photo-identified individuals were recorded 1 to 2894 d (1-8 yr) post-tagging. Short-term (<22 d) effects observed included localised and regional swelling, depression at the tag site, blubber extrusion, skin loss and pigmentation colour change. Broad swelling observable from lateral but not aerial imagery (~1.2 m diameter or ~9% of body length) and depression at the tag site persisted up to 1446 d post-tagging for 1 individual, indicating a persistent foreign-body response or infection. Two tagged individuals returned 4 yr post-tagging in 2018 with a calf, and the medium-term effects were evaluated by comparing body condition of tagged whales with non-tagged whales. These females calved in a typical 4 yr interval, suggesting no apparent immediate impact of tagging on reproduction for these individuals, but longer-term monitoring is needed. There was no observable difference in the body condition between the 2 tagged and non-tagged females. Ongoing monitoring post-tagging is required to build on the sample size and statistical power. We demonstrate the value of long-term monitoring programmes and a collaborative approach for evaluating effects from satellite-tagging cetaceans to support species management.


Subject(s)
Adipose Tissue , Whales , Female , Animals , Australia , Pigmentation , Reproduction
2.
Proc Natl Acad Sci U S A ; 120(10): e2214035120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36848574

ABSTRACT

Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (>60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (>60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.


Subject(s)
Climate Change , Ecosystem , Animals , Antarctic Regions , Anthropogenic Effects , Indian Ocean
4.
PLoS One ; 15(5): e0231577, 2020.
Article in English | MEDLINE | ID: mdl-32380516

ABSTRACT

Southern right whales (Eubalaena australis) migrate between Austral-winter calving and socialising grounds to offshore mid- to high latitude Austral-summer feeding grounds. In Australasia, winter calving grounds used by southern right whales extend from Western Australia across southern Australia to the New Zealand sub-Antarctic Islands. During the Austral-summer these whales are thought to migrate away from coastal waters to feed, but the location of these feeding grounds is only inferred from historical whaling data. We present new information on the satellite derived offshore migratory movements of six southern right whales from Australasian wintering grounds. Two whales were tagged at the Auckland Islands, New Zealand, and the remaining four at Australian wintering grounds, one at Pirates Bay, Tasmania, and three at Head of Bight, South Australia. The six whales were tracked for an average of 78.5 days (range: 29 to 150) with average individual distance of 38 km per day (range: 20 to 61 km). The length of individually derived tracks ranged from 645-6,381 km. Three likely foraging grounds were identified: south-west Western Australia, the Subtropical Front, and Antarctic waters, with the Subtropical Front appearing to be a feeding ground for both New Zealand and Australian southern right whales. In contrast, the individual tagged in Tasmania, from a sub-population that is not showing evidence of post-whaling recovery, displayed a distinct movement pattern to much higher latitude waters, potentially reflecting a different foraging strategy. Variable population growth rates between wintering grounds in Australasia could reflect fidelity to different quality feeding grounds. Unlike some species of baleen whale populations that show movement along migratory corridors, the new satellite tracking data presented here indicate variability in the migratory pathways taken by southern right whales from Australia and New Zealand, as well as differences in potential Austral summer foraging grounds.


Subject(s)
Animal Migration/physiology , Satellite Communications/statistics & numerical data , Seasons , Telemetry/methods , Whales/physiology , Animals , Australia , Models, Statistical , New Zealand
SELECTION OF CITATIONS
SEARCH DETAIL
...