Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Open J Eng Med Biol ; 4: 141-147, 2023.
Article in English | MEDLINE | ID: mdl-38274781

ABSTRACT

Assessment of coupling between transtibial sockets and users is historically based on clinicians' observations and experience, but can be inaccurate and unreliable. Therefore, we present a proof of concept, for five out of six possible degrees of freedom coupling metric system for a socket, using motion analysis calibrated on a 3D printed limb substitute. The method is compatible with any socket suspension method and does not require prior modifications to the socket. Calibration trials were used to locate the axis of rotation of the knee joint referenced against a marker cluster on the thigh; this allowed for the identification of the limb during test trials despite the entire residuum being obscured from view by the socket. The error in the technique was found to be within 0.7 mm in displacement and 0.7 degrees in rotation, based on the control data. Dynamic testing showed the Inter Quartile Range (IQR) of inter time step variance was <0.5 mm/deg for all metrics. The method can form a basis for objective socket evaluation, improve clinical practice and the quality of life for amputees.

3.
Sensors (Basel) ; 21(24)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34960503

ABSTRACT

The fit of a lower limb prosthetic socket is critical for user comfort and the quality of life of lower limb amputees. Sockets are conventionally produced using hand-crafted patient-based casting techniques. Modern digital techniques offer a host of advantages to the process and ultimately lead to improving the lives of amputees. However, commercially available scanning equipment required is often expensive and proprietary. Smartphone photogrammetry could offer a low cost alternative, but there is no widely accepted imaging technique for prosthetic socket digitisation. Therefore, this paper aims to determine an optimal imaging technique for whole socket photogrammetry and evaluate the resultant scan measurement accuracy. A 3D printed transtibial socket was produced to create digital and physical twins, as reference models. The printed socket was photographed from 360 positions and simplified genetic algorithms were used to design a series of experiments, whereby a collection of photos were processed using Autodesk ReCap. The most fit technique was used to assess accuracy. The accuracy of the socket wall volume, surface area and height were 61.63%, 99.61% and 99.90%, respectively, when compared to the digital reference model. The scanned model had a wall thickness ranging from 2.075 mm at the top to 7.758 mm towards the base of the socket, compared to a consistent thickness of 2.025 mm in the control model. The technique selected did not show sufficient accuracy for clinical application due to the degradation of accuracy nearer to the base of the socket interior. However, using an internal wall thickness estimation, scans may be of sufficient accuracy for clinical use; assuming a uniform wall thickness.


Subject(s)
Artificial Limbs , Smartphone , Humans , Photogrammetry , Prosthesis Design , Quality of Life
4.
J Clin Med ; 10(15)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34362227

ABSTRACT

Modeling the physiology of the human placenta is still a challenge, despite the great number of scientific advancements made in the field. Animal models cannot fully replicate the structure and function of the human placenta and pose ethical and financial hurdles. In addition, increasingly stricter animal welfare legislation worldwide is incentivizing the use of 3R (reduction, refinement, replacement) practices. What efforts have been made to develop alternative models for the placenta so far? How effective are they? How can we improve them to make them more predictive of human pathophysiology? To address these questions, this review aims at presenting and discussing the current models used to study phenomena at the placenta level: in vivo, ex vivo, in vitro and in silico. We describe the main achievements and opportunities for improvement of each type of model and critically assess their individual and collective impact on the pursuit of predictive studies of the placenta in line with the 3Rs and European legislation.

5.
Bioengineering (Basel) ; 8(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34436116

ABSTRACT

Drug and chemical development along with safety tests rely on the use of numerous clinical models. This is a lengthy process where animal testing is used as a standard for pre-clinical trials. However, these models often fail to represent human physiopathology. This may lead to poor correlation with results from later human clinical trials. Organ-on-a-Chip (OOAC) systems are engineered microfluidic systems, which recapitulate the physiochemical environment of a specific organ by emulating the perfusion and shear stress cellular tissue undergoes in vivo and could replace current animal models. The success of culturing cells and cell-derived tissues within these systems is dependent on the scaffold chosen; hence, scaffolds are critical for the success of OOACs in research. A literature review was conducted looking at current OOAC systems to assess the advantages and disadvantages of different materials and manufacturing techniques used for scaffold production; and the alternatives that could be tailored from the macro tissue engineering research field.

6.
Anal Biochem ; 547: 84-88, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29447855

ABSTRACT

A point of care device utilising Lab-on-a-Chip technologies that is applicable for biological pathogens was designed, fabricated and tested showing sample in to answer out capabilities. The purpose of the design was to develop a cartridge with the capability to perform nucleic acid extraction and purification from a sample using a chitosan membrane at an acidic pH. Waste was stored within the cartridge with the use of sodium polyacrylate to solidify or gelate the sample in a single chamber. Nucleic acid elution was conducted using the RPA amplification reagents (alkaline pH). Passive valves were used to regulate the fluid flow and a multiplexer was designed to distribute the fluid into six microchambers for amplification reactions. Cartridges were produced using soft lithography of silicone from 3D printed moulds, bonded to glass substrates. The isothermal technique, RPA is employed for amplification. This paper shows the results from two separate experiments: the first using the RPA control nucleic acid, the second showing successful amplification from Chlamydia Trachomatis. Endpoint analysis conducted for the RPA analysis was gel electrophoresis that showed 143 base pair DNA was amplified successfully for positive samples whilst negative samples did not show amplification. End point analysis for Chlamydia Trachomatis samples was fluorescence detection that showed successful detection of 1 copy/µL and 10 copies/µL spiked in a MES buffer.


Subject(s)
Chlamydia trachomatis , Lab-On-A-Chip Devices , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , Nucleic Acids , Point-of-Care Systems , Chitosan/chemistry , Chlamydia trachomatis/genetics , Chlamydia trachomatis/metabolism , Hydrogen-Ion Concentration , Membranes, Artificial , Nucleic Acids/analysis , Nucleic Acids/chemistry , Nucleic Acids/genetics , Nucleic Acids/isolation & purification
7.
Sensors (Basel) ; 16(10)2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27775581

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) substrates manufactured using complex nano-patterning techniques have become the norm. However, their cost of manufacture makes them unaffordable to incorporate into most biosensors. The technique shown in this paper is low-cost, reliable and highly sensitive. Chemical etching of solid Ag metal was used to produce simple, yet robust SERS substrates with broadband characteristics. Etching with ammonium hydroxide (NH4OH) and nitric acid (HNO3) helped obtain roughened Ag SERS substrates. Scanning electron microscopy (SEM) and interferometry were used to visualize and quantify surface roughness. Flattened Ag wires had inherent, but non-uniform roughness having peaks and valleys in the microscale. NH4OH treatment removed dirt and smoothened the surface, while HNO3 treatment produced a flake-like morphology with visibly more surface roughness features on Ag metal. SERS efficacy was tested using 4-methylbenzenethiol (MBT). The best SERS enhancement for 1 mM MBT was observed for Ag metal etched for 30 s in NH4OH followed by 10 s in HNO3. Further, MBT could be quantified with detection limits of 1 pM and 100 µM, respectively, using 514 nm and 1064 nm Raman spectrometers. Thus, a rapid and less energy intensive method for producing solid Ag SERS substrate and its efficacy in analyte sensing was demonstrated.

8.
Med Eng Phys ; 38(8): 741-8, 2016 08.
Article in English | MEDLINE | ID: mdl-27238759

ABSTRACT

This paper presents the design of a modular point of care test platform that integrates a proprietary sample collection device directly with a microfluidic cartridge. Cell lysis, within the cartridge, is conducted using a chemical method and nucleic acid purification is done on an activated cellulose membrane. The microfluidic device incorporates passive mixing of the lysis-binding buffers and sample using a serpentine channel. Results have shown extraction efficiencies for this new membrane of 69% and 57% compared to the commercial Qiagen extraction method of 85% and 59.4% for 0.1ng/µL and 100ng/µL salmon sperm DNA respectively spiked in phosphate buffered solution. Extraction experiments using the serpentine passive mixer cartridges incorporating lysis and nucleic acid purification showed extraction efficiency around 80% of the commercial Qiagen kit. Isothermal amplification was conducted using thermophillic helicase dependant amplification and recombinase polymerase amplification. A low cost benchtop real-time isothermal amplification platform has been developed capable of running six amplifications simultaneously. Results show that the platform is capable of detecting 1.32×10(6) of sample DNA through thermophillic helicase dependant amplification and 1×10(5) copy numbers Chlamydia trachomatis genomic DNA within 10min through recombinase polymerase nucleic acid amplification tests.


Subject(s)
Molecular Diagnostic Techniques/instrumentation , Point-of-Care Systems , Sexually Transmitted Diseases/diagnosis , Animals , DNA/genetics , DNA/isolation & purification , Hot Temperature , Lab-On-A-Chip Devices , Nucleic Acid Amplification Techniques
9.
Sensors (Basel) ; 15(9): 23418-30, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26389913

ABSTRACT

Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings.


Subject(s)
Nucleic Acid Amplification Techniques/economics , Nucleic Acid Amplification Techniques/instrumentation , Computer Systems/economics , DNA Helicases/metabolism , Equipment Design , Humans , Lab-On-A-Chip Devices/economics , Mobile Applications/economics , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Point-of-Care Systems , Real-Time Polymerase Chain Reaction/economics , Real-Time Polymerase Chain Reaction/instrumentation , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...