Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Tissue Eng ; 14: 20417314231196212, 2023.
Article in English | MEDLINE | ID: mdl-37661967

ABSTRACT

Current clinical treatments on lymphedema provide promising results, but also result in donor site morbidities. The establishment of a microenvironment optimized for lymphangiogenesis can be an alternative way to enhance lymphatic tissue formation. Hemodynamic flow stimuli have been confirmed to have an influential effect on angiogenesis in tissue engineering, but not on lymphatic vessel formation. Here, the three in vivo scaffolds generated from different blood stimuli in the subcutaneous layer, in the flow through pedicle, and in an arterio-venous (AV) loop model, were created to investigate potential of lymphangiogenesis of scaffolds containing lymphatic endothelial cells (LECs). Our results indicated that AV loop model displayed better lymphangiogenesis in comparison to the other two models with slower flow or no stimuli. Other than hemodynamic force, the supplement of LECs is required for lymphatic vessel regeneration. The in vivo scaffold generated from AV loop model provides an effective approach for engineering lymphatic tissue in the clinical treatment of lymphedema.

2.
J Cell Mol Med ; 19(6): 1273-83, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25754287

ABSTRACT

Periosteum is a promising tissue engineering scaffold in research of cartilage repair; so far however, periosteum transfers have not been realized successfully because of insufficient nourishment of the graft. In a translational approach we, for the first time, designed a vascularized periosteum flap as 'independent' biomaterial with its own blood supply to address this problem and to reconstruct circumscript cartilage defects. In six 3-month-old New Zealand rabbits, a critical size cartilage defect of the medial femur condyle was created and covered by a vascularized periosteum flap pedicled on the saphenous vessels. After 28 days, formation of newly built cartilage was assessed macroscopically, histologically and qualitatively via biomechanical compression testing, as well as on molecular biological level via immunohistochemistry. All wounds healed completely, all joints were stable and had full range of motion. All flaps survived and were perfused through their pulsating pedicles. They showed a stable attachment to the bone, although partially incomplete adherence. Hyaline cartilage with typical columnar cell distribution and positive Collagen II staining was formed in the transferred flaps. Biomechanical testing revealed a significantly higher maximum load than the positive control, but a low elasticity. This study proved that vascularization of the periosteum flap is the essential step for flap survival and enables the flap to transform into cartilage. Reconstruction of circumscript cartilage defects seems to be possible. Although these are the first results out of a pilot project, this technique, we believe, can have a wide range of potential applications and high relevance in the clinical field.


Subject(s)
Cartilage Diseases/surgery , Periosteum/transplantation , Surgical Flaps/blood supply , Tissue Engineering/methods , Animals , Bone Transplantation/methods , Cartilage Diseases/physiopathology , Collagen Type II/metabolism , Immunohistochemistry , Pilot Projects , Rabbits , Range of Motion, Articular , Treatment Outcome , Wound Healing
3.
BMC Musculoskelet Disord ; 15: 245, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-25048639

ABSTRACT

BACKGROUND: Biomechanical testing is an essential component of bone research. In order to test the metaphyseal region of long bones, a typical location for the nowadays increasing field of osteoporotic bone changes, three-point bending and breaking test devices are suitable and widely used. The aim of our study was to increase the effectiveness of this method by using a newly developed ball-mounted platform design. This new design eliminates the negative effects of friction, present in previous studies, caused by the lengthening of the distal tibia along its diaphyseal axis while sliding over the surface of a fixed aluminum block. METHODS: 70 tibiae of 35 twelve week old, female Sprague Dawley rats were separated into two groups for a metaphyseal bending/breaking test. Group 1 was made up of the rat's right tibiae, Group 2 of the left tibiae. Group 1 was tested on a solid metal block according to previously established testing devices whereas Group 2 was tested on the newly designed device: the resistance-free gliding, ball-mounted platform. Stiffness (N/mm), yield Load (N), and failure Load (N) were registered. In the evaluation of both testing procedures, the results of the right and left tibiae were compared according to the rat they originated from. RESULTS: Stiffness (S) showed highly significant differences (p = 0.002) with 202.25 ± 27.010 N/mm SD (Group 1) and 184.66 ± 35.875 N/mm SD (Group 2). Yield Load (yL) showed highly significant differences (p < 0.001) with 55.31 ± 13.074 N SD (Group1) and 37.17 ± 12.464 N SD (Group2). The mean failure Load (fL) did not differ significantly (p < 0.231) between Group 1: 81.34 ± 11.972 N SD and Group 2: 79.63 ± 10.345 N SD. CONCLUSIONS: We therefore conclude that, used in the three-point bending/breaking test, the mobile, ball-mounted platform device is able to efficiently eliminate the influence of friction in terms of stiffness and yield load. Failure Load was not affected. We suggest that the new ball-mounted platform device, when compared to other existing techniques, generates more accurate test results when used in the three-point bending/breaking test of the metaphysis of long bones.


Subject(s)
Physical Examination/instrumentation , Tibia/physiology , Animals , Biomechanical Phenomena , Equipment Design , Female , Friction , Physical Examination/methods , Predictive Value of Tests , Rats, Sprague-Dawley , Reproducibility of Results , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL