Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Invest Dermatol ; 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38219917

ABSTRACT

Cutaneous T-cell lymphomas are mature lymphoid neoplasias resulting from the malignant transformation of skin-resident T-cells. A distinctive clinical feature of cutaneous T-cell lymphomas is their sensitivity to treatment with histone deacetylase inhibitors. However, responses to histone deacetylase inhibitor therapy are universally transient and noncurative, highlighting the need for effective and durable drug combinations. In this study, we demonstrate that the combination of romidepsin, a selective class I histone deacetylase inhibitor, with afatinib, an EGFR family inhibitor, induces strongly synergistic antitumor effects in cutaneous T-cell lymphoma models in vitro and in vivo through abrogation of Jak-signal transducer and activator of transcription signaling. These results support a previously unrecognized potential role for histone deacetylase inhibitor plus afatinib combination in the treatment of cutaneous T-cell lymphomas.

2.
Cell Rep ; 39(3): 110695, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35443168

ABSTRACT

Peripheral T cell lymphoma not otherwise specified (PTCL-NOS) comprises heterogeneous lymphoid malignancies characterized by pleomorphic lymphocytes and variable inflammatory cell-rich tumor microenvironment. Genetic drivers in PTCL-NOS include genomic alterations affecting the VAV1 oncogene; however, their specific role and mechanisms in PTCL-NOS remain incompletely understood. Here we show that expression of Vav1-Myo1f, a recurrent PTCL-associated VAV1 fusion, induces oncogenic transformation of CD4+ T cells. Notably, mouse Vav1-Myo1f lymphomas show T helper type 2 features analogous to high-risk GATA3+ human PTCL. Single-cell transcriptome analysis reveals that Vav1-Myo1f alters T cell differentiation and leads to accumulation of tumor-associated macrophages (TAMs) in the tumor microenvironment, a feature linked with aggressiveness in human PTCL. Importantly, therapeutic targeting of TAMs induces strong anti-lymphoma effects, highlighting the lymphoma cells' dependency on the microenvironment. These results demonstrate an oncogenic role for Vav1-Myo1f in the pathogenesis of PTCL, involving deregulation in T cell polarization, and identify the lymphoma-associated macrophage-tumor microenvironment as a therapeutic target in PTCL.


Subject(s)
Lymphoma, T-Cell, Peripheral , Animals , Gene Fusion , Lymphoma, T-Cell, Peripheral/genetics , Lymphoma, T-Cell, Peripheral/metabolism , Lymphoma, T-Cell, Peripheral/pathology , Macrophages/metabolism , Mice , Myosin Type I/genetics , Oncogenes , Proto-Oncogene Proteins c-vav/genetics , Proto-Oncogene Proteins c-vav/metabolism , Tumor Microenvironment/genetics
3.
Cancer Discov ; 12(3): 856-871, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34711640

ABSTRACT

Early T-cell acute lymphoblastic leukemia (ETP-ALL) is an aggressive hematologic malignancy associated with early relapse and poor prognosis that is genetically, immunophenotypically, and transcriptionally distinct from more mature T-cell acute lymphoblastic leukemia (T-ALL) tumors. Here, we leveraged global metabolomic and transcriptomic profiling of primary ETP- and T-ALL leukemia samples to identify specific metabolic circuitries differentially active in this high-risk leukemia group. ETP-ALLs showed increased biosynthesis of phospholipids and sphingolipids and were specifically sensitive to inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme in the mevalonate pathway. Mechanistically, inhibition of cholesterol synthesis inhibited oncogenic AKT1 signaling and suppressed MYC expression via loss of chromatin accessibility at a leukemia stem cell-specific long-range MYC enhancer. In all, these results identify the mevalonate pathway as a druggable novel vulnerability in high-risk ETP-ALL cells and uncover an unanticipated critical role for cholesterol biosynthesis in signal transduction and epigenetic circuitries driving leukemia cell growth and survival. SIGNIFICANCE: Overtly distinct cell metabolic pathways operate in ETP- and T-ALL pointing to specific metabolic vulnerabilities. Inhibition of mevalonate biosynthesis selectively blocks oncogenic AKT-MYC signaling in ETP-ALL and suppresses leukemia cell growth. Ultimately, these results will inform the development of novel tailored and more effective treatments for patients with high-risk ETP-ALL. This article is highlighted in the In This Issue feature, p. 587.


Subject(s)
Precursor Cells, T-Lymphoid , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Carcinogenesis/metabolism , Cholesterol/metabolism , Epigenesis, Genetic , Humans , Mevalonic Acid/metabolism , Precursor Cells, T-Lymphoid/metabolism , Precursor Cells, T-Lymphoid/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction
4.
J Invest Dermatol ; 141(12): 2908-2920.e7, 2021 12.
Article in English | MEDLINE | ID: mdl-34089720

ABSTRACT

Sézary syndrome is an aggressive and disseminated form of cutaneous T-cell lymphoma associated with dismal prognosis in which the histone deacetylase inhibitor romidepsin has shown remarkable activity as a single agent. However, clinical responses to romidepsin are typically transient, highlighting the need for more effective therapies. In this study, we show synergistic antilymphoma effects of romidepsin in combination with mechlorethamine, an alkylating agent, in cutaneous T-cell lymphoma cell lines and primary samples with strong antitumor effects in an in vivo model of Sézary syndrome. Mechanistically, gene expression profiling points to abrogation of Jak/signal transducer and activator of transcription (STAT) signaling as an important mediator of this interaction. Consistently, the combination of mechlorethamine plus romidepsin resulted in downregulation of STAT5 phosphorylation in romidepsin-sensitive cell lines and primary Sézary syndrome samples, but not in romidepsin-resistant tumors. Moreover, in further support of Jak/STAT signaling as a modulator of romidepsin activity in cutaneous T-cell lymphoma, treatment with romidepsin in combination with Jak inhibitors resulted in markedly increased therapeutic responses. Overall, these results support a role for romidepsin plus mechlorethamine in combination in the treatment of cutaneous T-cell lymphoma and uncover a previously unrecognized role for Jak/STAT signaling in the response to romidepsin and romidepsin-based combination therapies in Sézary syndrome.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Depsipeptides/administration & dosage , Janus Kinase Inhibitors/pharmacology , Lymphoma, T-Cell, Cutaneous/drug therapy , Mechlorethamine/administration & dosage , STAT Transcription Factors/antagonists & inhibitors , Skin Neoplasms/drug therapy , Animals , Cell Line, Tumor , Drug Synergism , Humans , Mice , STAT Transcription Factors/physiology , Signal Transduction/drug effects
5.
Nat Commun ; 10(1): 822, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30778053

ABSTRACT

Premature termination codons (PTCs) are responsible for 10-15% of all inherited disease. PTC suppression during translation offers a promising approach to treat a variety of genetic disorders, yet small molecules that promote PTC read-through have yielded mixed performance in clinical trials. Here we present a high-throughput, cell-based assay to identify anticodon engineered transfer RNAs (ACE-tRNA) which can effectively suppress in-frame PTCs and faithfully encode their cognate amino acid. In total, we identify ACE-tRNA with a high degree of suppression activity targeting the most common human disease-causing nonsense codons. Genome-wide transcriptome ribosome profiling of cells expressing ACE-tRNA at levels which repair PTC indicate that there are limited interactions with translation termination codons. These ACE-tRNAs display high suppression potency in mammalian cells, Xenopus oocytes and mice in vivo, producing PTC repair in multiple genes, including disease causing mutations within cystic fibrosis transmembrane conductance regulator (CFTR).


Subject(s)
Codon, Nonsense/genetics , Genetic Engineering/methods , RNA, Transfer/genetics , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Female , Gene Library , HEK293 Cells , Humans , Mice, Inbred Strains , Oocytes/cytology , Oocytes/physiology , Ribosomes/genetics , Xenopus laevis
6.
Elife ; 52016 10 06.
Article in English | MEDLINE | ID: mdl-27710770

ABSTRACT

C-type inactivation of potassium channels fine-tunes the electrical signaling in excitable cells through an internal timing mechanism that is mediated by a hydrogen bond network in the channels' selectively filter. Previously, we used nonsense suppression to highlight the role of the conserved Trp434-Asp447 indole hydrogen bond in Shaker potassium channels with a non-hydrogen bonding homologue of tryptophan, Ind (Pless et al., 2013). Here, molecular dynamics simulations indicate that the Trp434Ind hydrogen bonding partner, Asp447, unexpectedly 'flips out' towards the extracellular environment, allowing water to penetrate the space behind the selectivity filter while simultaneously reducing the local negative electrostatic charge. Additionally, a protein engineering approach is presented whereby split intein sequences are flanked by endoplasmic reticulum retention/retrieval motifs (ERret) are incorporated into the N- or C- termini of Shaker monomers or within sodium channels two-domain fragments. This system enabled stoichiometric control of Shaker monomers and the encoding of multiple amino acids within a channel tetramer.


Subject(s)
Membrane Potentials/physiology , Mutagenesis, Site-Directed/methods , NAV1.4 Voltage-Gated Sodium Channel/chemistry , Recombinant Fusion Proteins/chemistry , Shaker Superfamily of Potassium Channels/chemistry , Amino Acid Sequence , Animals , Binding Sites , Gene Expression , HEK293 Cells , Humans , Ion Channel Gating , Kinetics , Models, Molecular , Molecular Dynamics Simulation , Mutation , NAV1.4 Voltage-Gated Sodium Channel/genetics , NAV1.4 Voltage-Gated Sodium Channel/metabolism , Oocytes/cytology , Oocytes/physiology , Patch-Clamp Techniques , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains , Protein Engineering , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Shaker Superfamily of Potassium Channels/genetics , Shaker Superfamily of Potassium Channels/metabolism , Thermodynamics , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...