Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Water Res ; 261: 122000, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38944003

ABSTRACT

Anaerobic digestion (AD) is a key technology for converting organic matters to methane-rich biogas. However, nutrient imbalance can destabilize the whole digestion. To realize stable operation of AD and improve its efficiency, this work considers a new strategy to control the intermediate concentrations of poor AD under nutrient stress. For this purpose, long-term digestion under different nutrient conditions was investigated. Results showed that the feedstock with a low C/N ratio (= 6) caused VFA accumulation (2072 ± 632 mg/L), leading to the inhibition of methane production. Employing a substrate with a higher C/N ratio (= 11) and/or adding NH4HCO3 (200 mg NH4+-N/Ladd) could alleviate the VFA inhibition, but excessive dosage of NH4HCO3 would induce ammonia inhibition. Through the established digestion balance between free ammonia nitrogen (FAN) between 0 and 25 mg/L, volatile fatty acid (VFA) 510-2100 mg/L, and alkalinity (ALK) 3300-7800 mg/L, an efficient methane yield of 150-250 mL/g VS was achieved and stable operation of AD under nutrient stress (low C/N ratio) was realized. Metabolic reconstruction between Euryarchaeota sp. MAG162, Methanosarcina mazei MAG53 and Mesotoga infera MAG119 highlighted that microbial niche balance was developed as a result of digestion balance, which is beneficial for stable operation of AD. These findings improved our understanding of the interaction mechanism between intermediates and microbial niches for stability control in AD.

2.
Front Microbiol ; 15: 1324099, 2024.
Article in English | MEDLINE | ID: mdl-38550862

ABSTRACT

A recent focus has been on the recovery of single-cell protein and other nutritionally valuable bioproducts, such as Coenzyme Q10 (CoQ10) from purple non-sulfur bacteria (PNSB) biomass following wastewater treatment. However, due to PNSB's peculiar cell envelope (e.g., increased membrane cross-section for energy transduction) and relatively smaller cell size compared to well-studied microbial protein sources like yeast and microalgae, the effectiveness of common cell disruption methods for protein quantification from PNSB may differ. Thus, this study examines the efficiency of selected chemical (NaOH and EDTA), mechanical (homogenization and bead milling), physical (thermal and bath/probe sonication), and combined chemical-mechanical/physical treatment techniques on the PNSB cell lysis. PNSB biomass was recovered from the treatment of gas-to-liquid process water. Biomass protein and CoQ10 contents were quantified based on extraction efficiency. Considering single-treatment techniques, bead milling resulted in the best protein yields (p < 0.001), with the other techniques resulting in poor yields. However, the NaOH-assisted sonication (combined chemical/physical treatment technique) resulted in similar protein recovery (p = 1.00) with bead milling, with the former having a better amino acid profile. For example, close to 50% of the amino acids, such as sensitive ones like tryptophan, threonine, cystine, and methionine, were detected in higher concentrations in NaOH-assisted sonication (>10% relative difference) compared to bead-milling due to its less disruptive nature and improved solubility of amino acids in alkaline conditions. Overall, PNSB required more intensive protein extraction techniques than were reported to be effective on other single-cell organisms. NaOH was the preferred chemical for chemical-aided mechanical/physical extraction as EDTA was observed to interfere with the Lowry protein kit, resulting in significantly lower concentrations. However, EDTA was the preferred chemical agent for CoQ10 extraction and quantification. CoQ10 extraction efficiency was also suspected to be adversely influenced by pH and temperature.

4.
J Environ Manage ; 345: 118917, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37688961

ABSTRACT

Greywater has lower pathogen and nutrient levels than other mixed wastewaters, making it easier to treat and to reuse in nature-based wastewater treatment systems. Green walls (GWs) are one type of nature-based solutions (NBS) that are evolving in design to support on-site and low-cost greywater treatment. Greywater treatment in GWs involves interacting and complex physical, chemical, and biological processes. Design and operational considerations of such green technologies must facilitate these pivotal processes to achieve effective greywater treatment. This critical review comprehensively analyses the scientific literature on nutrient removal from greywater in GWs. It discusses nutrient removal efficiency in different GW types. Total nitrogen removal ranges from 7 to 91% in indirect green facades (IGF), 48-93% for modular living walls (MLW), and 8-26% for continuous living walls (CLW). Total phosphorus removal ranges from 7 to 67% for IGF and 2-53% for MLW. The review also discusses the specific nutrient removal mechanisms orchestrated by vegetation, substrates, and biofilms to understand their role in nitrogen and phosphorus removal within GWs. The effects of key GW design parameters on nutrient removal, including substrate characteristics, vegetation species, biodegradation, temperature, and operating parameters such as irrigation cycle and hydraulic loading rate, are assessed. Results show that greater substrate depth enhances nutrient removal efficiency in GWs by facilitating efficient filtration, straining, adsorption, and various biological processes at varying depths. Particle size and pore size are critical substrate characteristics in GWs. They can significantly impact the effectiveness of physicochemical and biological removal processes by providing sufficient pollutant contact time, active surface area, and by influencing saturation and redox conditions. Hydraulic loading rate (HLR) also impacts the contact time and redox conditions. An HLR between 50 and 60 mm/d during the vegetation growing season provides optimal nutrient removal. Furthermore, nutrient removal was higher when watering cycles were customized to specific vegetation types and their drought tolerances.


Subject(s)
Biofilms , Nitrogen , Adsorption , Biodegradation, Environmental , Nutrients , Phosphorus
5.
Biotechnol Rep (Amst) ; 36: e00775, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36404947

ABSTRACT

Coenzyme Q10 (CoQ10) is a powerful antioxidant with a myriad of applications in healthcare and cosmetic industries. The most effective route of CoQ10 production is microbial biosynthesis. In this study, four CoQ10 biosynthesizing purple photosynthetic bacteria: Rhodobacter blasticus, Rhodovulum adriaticum, Afifella pfennigii and Rhodovulum marinum, were identified using 16S rRNA sequencing of enriched microbial mat samples obtained from Purple Island mangroves (Qatar). The membrane bound enzyme 4-hydroxybenzoate octaprenyltransferase (UbiA) is pivotal for bacterial biosynthesis of CoQ10. The identified bacteria could be inducted as efficient industrial bio-synthesizers of CoQ10 by engineering their UbiA enzymes. Therefore, the mutation sites and substitution residues for potential functional enhancement were determined by comparative computational study. Two mutation sites were identified within the two conserved Asp-rich motifs, and the effect of proposed mutations in substrate binding affinity of the UbiA enzymes was assessed using multiple ligand simultaneous docking (MLSD) studies, as a groundwork for experimental studies.

6.
Biomass Convers Biorefin ; : 1-30, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35855911

ABSTRACT

With ever-growing population comes an increase in waste and wastewater generated. There is ongoing research to not only reduce the waste but also to increase its value commercially. One method is pyrolysis, a process that converts wastes, at temperatures usually above 300 °C in a pyrolysis unit, to carbon-rich biochars among with other useful products. These chars are known to be beneficial as they can be used for water treatment applications; certain studies also reveal improvements in the biochar quality especially on the surface area and pore volume by imparting thermal and chemical activation methods, which eventually improves the uptake of pollutants during the removal of inorganic and organic contaminants in water. Research based on single waste valorisation into biochar applications for water treatment has been extended and applied to the pyrolysis of two or more feedstocks, termed co-pyrolysis, and its implementation for water treatment. The co-pyrolysis research mainly covers activation, applications, predictive calculations, and modelling studies, including isotherm, kinetic, and thermodynamic adsorption analyses. This paper focuses on the copyrolysis biochar production studies for activated adsorbents, adsorption mechanisms, pollutant removal capacities, regeneration, and real water treatment studies to understand the implementation of these co-pyrolyzed chars in water treatment applications. Finally, some prospects to identify the future progress and opportunities in this area of research are also described. This review provides a way to manage solid waste in a sustainable manner, while developing materials that can be utilized for water treatment, providing a double target approach to pollution management.

7.
Chemosphere ; 295: 133849, 2022 May.
Article in English | MEDLINE | ID: mdl-35124080

ABSTRACT

In recent years, tremendous interest has been generated in MXenes as a fast-growing and diversified family of two-dimensional (2D) materials with a wide range of potential uses. MXenes exhibit many unique structural and physicochemical properties that make them particularly attractive as adsorbents for removing heavy metals from aqueous media, including a large surface area, abundant surface terminations, electron-richness, and hydrophilic nature. In light of the adsorption capabilities of MXenes at the ever-increasing rate of expansion, this review investigates the recent computational predictions for the adsorption capabilities of MXenes and the effect of synthesis of different MXene on their remediation behavior toward heavy metals. The influence of MXene engineering strategies such as alkalization, acidification, and incorporation into organic and inorganic hosts on their surface properties and adsorption capacity is compared to provide critical insights for designing effective MXene adsorbents. Additionally, the review discusses MXenes' adsorption mechanisms, the effect of coexisting ions on MXenes' selectivity, the regeneration of exhausted MXenes, and provides an overview of MXenes' stability and biocompatibility to demonstrate their potentiality for wastewater remediation. Finally, the review identifies current flaws and offers recommendations for further research.


Subject(s)
Metals, Heavy , Water Purification , Adsorption , Wastewater , Water , Water Purification/methods
8.
ACS Omega ; 6(49): 33325-33338, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34926884

ABSTRACT

Due to their broad applications in various industrial activities, and their well-known negative impacts on the aquatic environment, organic dyes have been continuously identified as serious threat to the quality of ecosystems. The photocatalytic degradation process in aqueous solutions has emerged as an efficient and reliable approach for the removal of organic dyes. MXenes, a new class of two-dimensional (2D) nanomaterials, possess unique chemical composition, surface functionalities, and physicochemical properties. Such characteristics enable MXenes to act as efficient catalysts or cocatalysts to photodegrade organic molecules. This work explores the application of Ti3C2T x MXene decorated with silver and palladium nanoparticles, using a simple hydrothermal treatment method, for the photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB). The chemical composition of these photocatalysts, as well as their structural properties and morphology, was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. The photocatalytic degradation abilities of the pristine MXene and the synthesized MXene composites were investigated under ultraviolet and solar light irradiation. A significant improvement in the photocatalytic performances was observed for all oxidized MXene composites when compared to pristine MXene, with a superior degradation efficiency achieved for AgNPs/TiO2/Ti3C2T x . This work broadens the application range of oxidized MXene composites, providing an alternative material for degrading organics dyes and wastewater treatment applications.

9.
J Environ Manage ; 287: 112345, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33735671

ABSTRACT

In this work, the sustainable valorisation of camel manure has been studied using thermogravimetric analysis. The gasification tests were performed from ambient conditions to 950 °C at 10, 20, and 50 °C/min under an O2 environment. The TGA data were applied to determine the kinetics of the O2 gasification. Single-heating rate models (Arrhenius and Coats-Redfern) and multi-heating rate models (Distributed activation energy, Friedman, Flynn-Wall-Ozawa, Starink, and Kissinger-Akahira-Sunose) were applied to estimate the kinetics of the process. Between the two single-heating rate models, the Coats-Redfern method fitted best with the experimental data. Among the multi-heating rate models, the Flynn-Wall-Ozawa model fitted best with the experimental results. The kinetic parameters-frequency factor, activation energy, and order of reaction were estimated using the Flynn-Wall-Ozawa model (the best-fitting model) and the estimated kinetic parameters were used to calculate the thermodynamic properties-Gibbs free energy, enthalpy, and entropy. The information on these kinetic and thermodynamic properties can be useful for the design of gasifiers and for optimising the O2 gasification operating conditions.


Subject(s)
Camelus , Manure , Animals , Heating , Kinetics , Thermogravimetry
10.
Waste Manag Res ; 39(7): 995-1004, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33327900

ABSTRACT

The citrus industry is considered one of the main contributors to agricultural waste. Peels are commonly used in the food industry or as feedstock in biorefining. In this study, the potential of waste orange peel biochar for agricultural applications in sandy soil was investigated. This will not only increase the percentage of agricultural waste recycling, but also lead to more sustainable agriculture with environmental benefits such as carbon sequestration. Biochar was produced through slow pyrolysis in the temperature range 300-600°C and at two holding durations (10 min and 60 min). Both factors had a significant impact on the physicochemical characteristics of biochar in the heating region 300-450°C. However, varying the holding time for pyrolysis temperatures beyond 450°C had a diminishing effect on biochar properties compared with the impact of increasing pyrolysis temperature. The study also looked at certain properties that are specific to agricultural application not previously reported for orange peel. Very high cation exchange capacities of 70 cmol kg-1 were achieved at 300°C, whereas water holding capacity was not strongly influenced by pyrolysis conditions. Preliminary planting tests indicate potential for improving agricultural sustainability in sandy soils. The technoeconomic analysis of biochar showed that the pyrolysis process can be profitable with sufficient plant capacity.


Subject(s)
Citrus sinensis , Pyrolysis , Charcoal , Sand , Soil
11.
Biotechnol Rep (Amst) ; 28: e00563, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304839

ABSTRACT

Anoxygenic phototrophic bacteria (APB) are a phylogenetically diverse group of organisms that can harness solar energy for their growth and metabolism. These bacteria vary broadly in terms of their metabolism as well as the composition of their photosynthetic apparatus. Unlike oxygenic phototrophic bacteria such as algae and cyanobacteria, APB can use both organic and inorganic electron donors for light-dependent fixation of carbon dioxide without generating oxygen. Their versatile metabolism, ability to adapt in extreme conditions, low maintenance cost and high biomass yield make APB ideal for wastewater treatment, resource recovery and in the production of high value substances. This review highlights the advantages of APB over algae and cyanobacteria, and their applications in photo-bioelectrochemical systems, production of poly-ß-hydroxyalkanoates, single-cell protein, biofertilizers and pigments. The ecology of ABP, their distinguishing factors, various physiochemical parameters governing the production of high-value substances and future directions of APB utilization are also discussed.

12.
Chemosphere ; 245: 125564, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31883500

ABSTRACT

Nature-based systems (NBS) are a cost-effective, energy efficient and aesthetically pleasing approach for greywater treatment, but they are space intensive. Vertical NBS overcome this issue but must utilize lightweight media to reduce their construction costs. This study evaluates four common plant growing media: perlite, coco coir, LECA and sand, and compares them with two new media derived from local waste materials: date seeds and spent coffee grounds (SCG). The media are characterized and tested for their removal of various greywater pollutants. Further tests are conducted comparing mixtures of perlite-coco coir and date seeds-SCG. SCG was found to be an excellent media for greywater treatment, providing a similar degree of treatment as the best traditional media, coco coir and providing improved drainage. Drainage was further improved by mixing SCG with date seeds, which performed better than any mixture of perlite and coco coir. Most pollutants showed a slight deterioration in treatment performance with this mixture, although the removal of suspended solids and chemical oxygen demand was improved. An increased bed height improved the treatment performance with SCG, while increased hydraulic loading resulted in decreased treatment performance for all media. This study demonstrates the potential of date seeds and SCG as locally recycled waste materials to realize treatment of greywater in vertical NBS.


Subject(s)
Waste Disposal, Fluid/methods , Aluminum Oxide , Biological Oxygen Demand Analysis , Coffee/chemistry , Recycling , Silicon Dioxide , Waste Products
13.
Waste Manag ; 98: 14-20, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31421485

ABSTRACT

Food waste is a pressing issue that imposes economic, social and environmental impacts on both developing and developed countries. This study analyzes quantitatively and qualitatively the generated food waste at various food outlets of a university campus in Qatar. It is a fundamental step to manage the issue of food waste from educational institutes. The investigation comprised four stages: screening, sampling, surveying, and synthesis. Food waste generation at the sampled locations was estimated at 329.5 kg/day or 80 t/year. Based on per sales estimates, total food waste was 980 g/sale and 757 g/sale at the student male and female housing complexes, respectively, equating to roughly one wasted meal for each sold meal. The majority of this waste was avoidable waste and the root cause for the excessive food waste generation was overproduction rather than consumer wastage. The study found that the main food provider, who primarily serves buffet style meals, lacks the proper tools to measure food waste generated at their cafeterias. Past experience was the primary tool to support the company's demand management estimation which has proven unsuccessful and highlights the need to not only educate the consumer but also food providers. Possible treatments routes are discussed based on food waste characterization findings.


Subject(s)
Food Services , Waste Management , Food , Humans , Middle East , Qatar , Universities
14.
Nanomaterials (Basel) ; 9(5)2019 May 19.
Article in English | MEDLINE | ID: mdl-31109135

ABSTRACT

Graphene oxide (GO) has shown great promise as a nanofiller to enhance the performance of mixed matrix composite membranes (MMMs) for water treatment applications. However, GO can be prepared by various synthesis routes, leading to different concentrations of the attached oxygen functional groups. In this research, GO produced by the Hummers', Tour, and Staudenmaier methods were characterized and embedded at various fractions into the matrix of polysulfone (PSf) and used to prepare microfiltration membranes via the phase inversion process. The effects of the GO preparation method and loading on the membrane characteristics, as well as performance for oil removal from an oil-water emulsion, are analyzed. Our results reveal that GO prepared by the Staudenmaier method has a higher concentration of the more polar carbonyl group, increasing the membrane hydrophilicity and porosity compared to GO prepared by the Hummers' and Tour methods. On the other hand, the Hummers' and Tour methods produce GO with larger sheet size, and are more effective in enhancing the mechanical properties of the PSf membrane. Finally, all MMMs exhibited improved water flux (up to 2.7 times) and oil rejection, than those for the control PSf sample, with the optimum GO loading ranged between 0.1-0.2 wt%.

15.
J Environ Manage ; 242: 22-30, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31026799

ABSTRACT

The study carried out an environmental assessment for two seawater reverse osmosis (RO) plants located within the Arabian Gulf considering subsurface intake alternatives and differing energy source options. The study used life cycle assessment to quantify the environmental impacts for open intake pretreatment vs. subsurface intake pretreatments of two plants with operating capacities of approximately 175,000 m3/d and 275,000 m3/d respectively. For both RO plants, electricity and chemical inputs were considered. Significant energy reductions of 30% were observed with subsurface intakes for extraction and pretreatment, resulting in a plant-wide energy saving of 6%. Open intake pretreatment had higher environmental impacts compared to subsurface intake across all impact categories, although in some impact categories significant differences existed between the two similar plants due to differences in chemicals used. The study further established that the renewable PV power generation resulted in the lowest global warming potential (GWP); however, a significant trade-off occurs with this energy source since it had the highest impact relative to both ozone and abiotic depletion potentials and was also worse than natural gas for both marine and human toxicity potentials. The GWP reductions achievable using a subsurface intake for the larger of the two plants is equivalent to 58,000 tons of CO2 per year, or more than 12,000 cars, making subsurface intakes a worthy alternative to conventional open intake systems in the Arabian Gulf region. Marine aquatic eco-toxicity potential was identified as the most significant normalized environmental impact, which should be best managed through using natural gas as an energy source.


Subject(s)
Ozone , Seawater , Electricity , Humans , Osmosis
16.
Sci Total Environ ; 652: 330-344, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30366334

ABSTRACT

Living walls and green roofs offer numerous benefits to densely populated urban areas such as cooling, air filtering and improved aesthetics. However, plants in these two systems are high water consumers making such systems particularly unsuitable for water-scarce arid environments most at need of passive cooling and urban greening. Integrated greywater treatment in these structures provides a possible solution, providing plants not only with water but other required nutrients and organics. However, greywater treatment by living wall and green roof systems is still lacking. This review summarizes the few studies exploring this new integrated technology and provides an in-depth analysis of existing literature on vegetated building structures and greywater treatment to reveal benefits and potential pitfalls of this technology. Appropriate selection of plants and media are essential to successful system design and must meet competing demands compared to those used in existing vegetated building structures for cooling/greening and constructed wetlands for greywater treatment. A variety of operational and user-interaction issues are also explored and will be key areas of future research to enable full-scale implementation. Integrated greywater treatment using green building vegetated structures appears a promising method for dual purpose water recycling and urban cooling, and various future research needs are emphasized to realize this.


Subject(s)
Conservation of Natural Resources/methods , Waste Disposal, Fluid/methods , Plants , Recycling , Water Supply , Wetlands
17.
Water Res ; 143: 399-415, 2018 10 15.
Article in English | MEDLINE | ID: mdl-29986249

ABSTRACT

Sulfide prevails in both industrial and municipal waste streams and is one of the most troublesome issues with waste handling. Various technologies and strategies have been developed and used to deal with sulfide for decades, among which biological means make up a considerable portion due to their low operation requirements and flexibility. Sulfur bacteria play a vital role in these biotechnologies. In this article, conventional biological approaches dealing with sulfide and functional microorganisms are systematically reviewed. Linking the sulfur cycle with other nutrient cycles such as nitrogen or phosphorous, and with continued focus of waste remediation by sulfur bacteria, has led to emerging biotechnologies. Furthermore, opportunities for energy harvest and resource recovery based on sulfur bacteria are also discussed. The electroactivity of sulfur bacteria indicates a broad perspective of sulfur-based bioelectrochemical systems in terms of bioelectricity production and bioelectrochemical synthesis. The considerable PHA accumulation, high yield and anoxygenic growth conditions in certain phototrophic sulfur bacteria could provide an interesting alternative for bioplastic production. In this review, new merits of biological sulfide oxidation from a traditional environmental management perspective as well as a waste to resource perspective are presented along with their potential applications.


Subject(s)
Bacteria/metabolism , Biotechnology/methods , Sulfur/chemistry , Waste Disposal, Fluid/methods , Bacteria/genetics , Biofuels , Bioreactors/microbiology , Biotechnology/instrumentation , Nitrogen/metabolism , Oxidation-Reduction , Phosphorus/metabolism , Sulfides/chemistry , Sulfides/metabolism , Waste Disposal, Fluid/instrumentation , Wastewater/chemistry
18.
Appl Microbiol Biotechnol ; 102(15): 6383-6392, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29862447

ABSTRACT

Sludge flotation is a commonly reported and long-standing issue hindering not only the widespread implementation of upflow anaerobic sludge bed (UASB)-type bioreactors in wastewater treatment but also the development of novel anaerobic/anoxic treatment processes such as anammox, partial denitrification, and biological sulfate reduction. This review attempts to address the instability of UASB-type bioreactors due to sludge flotation. Possible causes of sludge flotation are classified into intrinsic and extrinsic ones. Extrinsic causes include substrate overloading, inappropriate carbon source, overloading of proteins or oils, insufficient reactor mixing, a low temperature, and a low pH. These unfavorable extrinsic conditions can lead to unexpected intrinsic changes in sludge granules, including high gas production, formation of hollow space inside the granules, filamentous bacterial overgrowth, inappropriate production of extracellular polymeric substances, and development of an adhesive granule surface. These intrinsic changes can increase the flotation potential of sludge through reducing the granule density and promoting gas entrapment. To control the sludge flotation problem, both preventive and corrective strategies are summarized. Preventive strategies include maintaining a temperature of 30-35 °C and a pH of 7-9, preventing substrate overloading, providing sufficient nutrients and multiple carbon sources in the influent, applying pre-acidification, and enhancing reactor mixing. If the causes of a sludge flotation incident cannot be identified quickly, corrective strategies including breaking up floating granules and dosing with chemicals such as Fe2+ and surfactants can be applied to suppress the flotation problem.


Subject(s)
Bioreactors/microbiology , Bioreactors/standards , Sewage/microbiology , Waste Disposal, Fluid , Wastewater/microbiology , Sewage/chemistry , Surface-Active Agents/chemistry
19.
Water Sci Technol ; 77(3-4): 1027-1034, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29488966

ABSTRACT

Sulfur-oxidizing autotrophic denitrification (SO-AD) was investigated in a laboratory-scale moving-bed biofilm reactor (MBBR) at a sewage temperature of 22 °C. A synthetic wastewater with nitrate, sulfide and thiosulfate was fed into the MBBR. After 20 days' acclimation, the reduced sulfur compounds were completely oxidized and nitrogen removal efficiency achieved up to 82%. The operation proceeded to examine the denitrification by decreasing hydraulic retention time (HRT) from 12 to 4 h in stages. At steady state, this laboratory-scale SO-AD MBBR achieved the nitrogen removal efficiency of 94% at the volumetric loading rate of 0.18 kg N·(mreactor3·d)-1. The biofilm formation was examined periodically: the attached volatile solids (AVS) gradually increased corresponding to the decrease of HRT and stabilized at about 1,300 mg AVS·Lreactor-1 at steady state. This study demonstrated that without adding external organic carbon, SO-AD can be successfully applied in moving-bed carriers. The application of SO-AD MBBR has shown the potential for sulfur-containing industrial wastewater treatment, brackish wastewater treatment and the upgrading of the activated sludge system. Moreover, the study provides direct design information for the full-scale MBBR application of the sulfur-cycle based SANI process.


Subject(s)
Bioreactors , Denitrification , Waste Disposal, Fluid/methods , Autotrophic Processes , Biofilms , Equipment Design , Nitrates/metabolism , Nitrogen/metabolism , Oxidation-Reduction , Sewage , Sulfides/metabolism , Sulfur/metabolism , Waste Disposal, Fluid/instrumentation , Wastewater , Water Pollutants, Chemical/metabolism
20.
Water Res ; 135: 231-240, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29477061

ABSTRACT

The determination of organics biodegradability and corresponding biodegradation kinetics provides valuable information on the optimal design and operation of anaerobic biotechnology especially for sulfidogenesis. This study proposes a deterministic method, i.e. a biochemical sulfide potential (BSP) test, and compares it to the conventional biochemical methane potential (BMP) test in terms of their ability to characterize sulfate-laden organic waste biodegradability. It demonstrated 1.48 times higher degradation of volatile suspended solids (VSS) and 2.60 times more chemical oxygen demand (COD) conversion in its major metabolites than the BMP test. Moreover, it required only four days to complete, compared to the 35 days required by the BMP test. Through the two-substrate first-order hydrolysis model, it was revealed that the shortened time was attributed to the enhanced degradation rates from both readily (eight times) and slowly (nearly 10 times) biodegradable organic substrates in the BSP test compared with the BMP test for the same sulfate-laden organic waste. The findings highlight the inappropriateness of the BMP test to sulfidogenic applications due to the underestimated predictions of organic waste biodegradability and excessive time requirements. Furthermore, the ability of the BSP test to identify the average elemental composition (CxHyOzNaPbSc) of substrate biodegradable particulate organics (BPO) is explored and verified using a casein-based validation test. Using BPO elemental composition as the input variable, a BSP biochemical kinetic model is thereby developed to predict BSR performance and possible dynamic process control. Overall, this study demonstrates the applicability and advantages of the BSP test in sulfidogenic applications for characterization of organics biodegradability and identification of BPO average elemental composition, furthermore develops a process model utilizing the derived BPO average elemental composition to provide optimized reactor retention time and substrates feed mixture for optimum performance.


Subject(s)
Biotechnology/methods , Sulfides/metabolism , Waste Disposal, Fluid/methods , Anaerobiosis , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Hydrolysis , Kinetics , Methane/metabolism , Sulfates/metabolism , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL