Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(3): e0212764, 2019.
Article in English | MEDLINE | ID: mdl-30865665

ABSTRACT

Eukaryotic DNA binding proteins must access genomic DNA that is packaged into chromatin in vivo. During a productive infection, retroviral integrases (IN) must similarly interact with chromatin to integrate the viral cDNA genome. Here we examine the role of nucleosome DNA unwrapping in the retroviral integrase search for a target site. These studies utilized PFV intasomes that are comprised of a tetramer of PFV IN with two oligomers mimicking the viral cDNA ends. Modified recombinant human histones were used to generate nucleosomes with increased unwrapping rates at different DNA regions. These modifications included the acetylmimetic H3(K56Q) and the chemically engineered H4(K77ac, K79ac). While transcription factors and DNA damage sensors may search nucleosome bound DNA during transient unwrapping, PFV intasome mediated integration appears to be unaffected by increased nucleosome unwrapping. These studies suggest PFV intasomes do not utilize nucleosome unwrapping to search nucleosome targets.


Subject(s)
DNA, Viral/metabolism , Genome, Viral , Nucleosomes/metabolism , Spumavirus/metabolism , Virus Integration/physiology , Cell-Free System/chemistry , Cell-Free System/metabolism , DNA, Viral/chemistry , Histones/chemistry , Histones/metabolism , Humans , Nucleosomes/chemistry , Spumavirus/chemistry
2.
Sci Rep ; 9(1): 132, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30644416

ABSTRACT

The integrase (IN) enzyme of retrovirus prototype foamy virus (PFV) consists of four domains: amino terminal extension (NED), amino terminus (NTD), catalytic core (CCD), and carboxyl terminus domains (CTD). A tetramer of PFV IN with two viral DNA ends forms the functional intasome. Two inner monomers are catalytically active while the CCDs of the two outer monomers appear to play only structural roles. The NED, NTD, and CTD of the outer monomers are disordered in intasome structures. Truncation mutants reveal that integration to a supercoiled plasmid increases without the outer monomer CTDs present. Deletion of the outer CTDs enhances the lifetime of the intasome compared to full length (FL) IN or deletion of the outer monomer NTDs. High ionic strength buffer or several additives, particularly protocatechuic acid (PCA), enhance the integration of FL intasomes by preventing aggregation. These data confirm previous studies suggesting the disordered outer domains of PFV intasomes are not required for intasome assembly or integration. Instead, the outer CTDs contribute to aggregation of PFV intasomes which may be inhibited by high ionic strength buffer or the small molecule PCA.


Subject(s)
Hydroxybenzoates/pharmacology , Integrases/chemistry , Protein Aggregates/drug effects , Protein Domains/physiology , Spumavirus/enzymology , Viral Proteins/chemistry , Buffers , Integrases/metabolism , Osmolar Concentration , Protein Multimerization/drug effects , Viral Proteins/metabolism
3.
J Vis Exp ; (133)2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29608167

ABSTRACT

A defining feature and necessary step of the retrovirus life cycle is the integration of the viral genome into the host genome. All retroviruses encode an integrase (IN) enzyme that catalyzes the covalent joining of viral to host DNA, which is known as strand transfer. Integration may be modeled in vitro with recombinant retroviral IN and DNA oligomers mimicking the ends of the viral genome. In order to more closely recapitulate the integration reaction that occurs in vivo, integration complexes are assembled from recombinant IN and synthetic oligomers by dialysis in a reduced salt concentration buffer. The integration complex, called an intasome, may be purified by size exclusion chromatography. In the case of prototype foamy virus (PFV), the intasome is a tetramer of IN and two DNA oligomers and is readily separated from monomeric IN and free oligomer DNA. The integration efficiency of PFV intasomes may be assayed under a variety of experimental conditions to better understand the dynamics and mechanics of retroviral integration.


Subject(s)
DNA, Viral/genetics , Integrases/isolation & purification , Spumavirus/chemistry
4.
J Vis Exp ; (130)2017 12 08.
Article in English | MEDLINE | ID: mdl-29286489

ABSTRACT

The integrase (IN) protein of the retrovirus prototype foamy virus (PFV) is a model enzyme for studying the mechanism of retroviral integration. Compared to IN from other retroviruses, PFV IN is more soluble and more amenable to experimental manipulation. Additionally, it is sensitive to clinically relevant human immunodeficiency virus (HIV-1) IN inhibitors, suggesting that the catalytic mechanism of PFV IN is similar to that of HIV-1 IN. IN catalyzes the covalent joining of viral complementary DNA (cDNA) to target DNA in a process called strand transfer. This strand transfer reaction introduces nicks to the target DNA. Analysis of integration reaction products can be confounded by the presence of nucleases that similarly nick DNA. A bacterial nuclease has been shown to co-purify with recombinant PFV IN expressed in Escherichia coli (E. coli). Here we describe a method to isolate PFV IN from the contaminating nuclease by heparin affinity chromatography. Fractions are easily screened for nuclease contamination with a supercoiled plasmid and agarose gel electrophoresis. PFV IN and the contaminating nuclease display alternative affinities for heparin sepharose allowing a nuclease-free preparation of recombinant PFV IN suitable for bulk biochemical or single molecule analysis of integration.


Subject(s)
Deoxyribonucleases/isolation & purification , Integrases/isolation & purification , Spumavirus/isolation & purification , DNA, Viral/genetics , Humans , Recombinant Proteins/isolation & purification , Spumavirus/enzymology , Spumavirus/physiology , Virus Integration
5.
J Virol Methods ; 235: 134-138, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27269588

ABSTRACT

Retroviral infection requires integration of the viral genome into the host genome. Recombinant integrase proteins may be purified following bacterial expression. A bulk biochemical assay of integrase function relies on the conversion of supercoiled plasmids to linear or relaxed circles. Single molecule molecular tweezer assays of integrase also evaluate the conversion of supercoiled DNA to nicked and broken species. A bacterial nuclease that co-purifies with retroviral integrase may affect the quantitation of integration activity in bulk or single molecule assays. During purification of retroviral integrase from bacteria, fractions may be screened for contaminating nuclease activity. In order to efficiently separate the nuclease from integrase, the binding affinities of each protein must differ. We find that a co-purifying nuclease may be efficiently separated from integrase based on heparin affinity, but not ionic affinity.


Subject(s)
Deoxyribonucleases , Integrases/isolation & purification , Spumavirus/enzymology , Viral Proteins/isolation & purification , Chromatography, Affinity , DNA, Viral , Heparin/chemistry , Integrases/genetics , Recombinant Proteins/isolation & purification , Sepharose/chemistry , Spumavirus/physiology , Viral Proteins/chemistry , Virus Integration
6.
Int J Oncol ; 44(2): 563-72, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24297604

ABSTRACT

Basal-like breast cancers frequently express aberrant DNA hypermethylation associated with concurrent silencing of specific genes secondary to DNMT3b overexpression and DNMT hyperactivity. DNMT3b is known to be post-transcriptionally regulated by microRNAs. The objective of the current study was to determine the role of microRNA dysregulation in the molecular mechanism governing DNMT3b overexpression in primary breast cancers that express aberrant DNA hypermethylation. The expression of microRNAs (miRs) that regulate (miR-29a, miR-29b, miR-29c, miR-148a and miR-148b) or are predicted to regulate DNMT3b (miR­26a, miR-26b, miR-203 and miR-222) were evaluated among 70 primary breast cancers (36 luminal A-like, 13 luminal B-like, 5 HER2­enriched, 16 basal-like) and 18 normal mammoplasty tissues. Significantly reduced expression of miR-29c distinguished basal-like breast cancers from other breast cancer molecular subtypes. The expression of aberrant DNA hypermethylation was determined in a subset of 33 breast cancers (6 luminal A-like, 6 luminal B-like, 5 HER2-enriched and 16 basal-like) through examination of methylation­sensitive biomarker gene expression (CEACAM6, CDH1, CST6, ESR1, GNA11, MUC1, MYB, TFF3 and SCNN1A), 11/33 (33%) cancers exhibited aberrant DNA hypermethylation including 9/16 (56%) basal-like cancers, but only 2/17 (12%) non-basal-like cancers (luminal A-like, n=1; HER2-enriched, n=1). Breast cancers with aberrant DNA hypermethylation express diminished levels of miR-29a, miR-29b, miR-26a, miR-26b, miR-148a and miR-148b compared to cancers lacking aberrant DNA hypermethylation. A total of 7/9 (78%) basal-like breast cancers with aberrant DNA hypermethylation exhibit diminished levels of ≥6 regulatory miRs. The results show that i) reduced expression of miR-29c is characteristic of basal-like breast cancers, ii) miR and methylation-sensitive gene expression patterns identify two subsets of basal-like breast cancers, and iii) the subset of basal-like breast cancers with reduced expression of multiple regulatory miRs express aberrant DNA hypermethylation. Together, these findings strongly suggest that the molecular mechanism governing the DNMT3b-mediated aberrant DNA hypermethylation in primary breast cancer involves the loss of post-transcriptional regulation of DNMT3b by regulatory miRs.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Carcinoma, Basal Cell/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Breast Neoplasms/classification , Breast Neoplasms/pathology , Carcinoma, Basal Cell/pathology , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Female , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , DNA Methyltransferase 3B
SELECTION OF CITATIONS
SEARCH DETAIL
...