Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
2.
J Vis ; 24(4): 1, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558160

ABSTRACT

Almost 400 years ago, Rubens copied Titian's The Fall of Man, albeit with important changes. Rubens altered Titian's original composition in numerous ways, including by changing the gaze directions of the depicted characters and adding a striking red parrot to the painting. Here, we quantify the impact of Rubens's choices on the viewer's gaze behavior. We displayed digital copies of Rubens's and Titian's artworks-as well as a version of Rubens's painting with the parrot digitally removed-on a computer screen while recording the eye movements produced by observers during free visual exploration of each image. To assess the effects of Rubens's changes to Titian's composition, we directly compared multiple gaze parameters across the different images. We found that participants gazed at Eve's face more frequently in Rubens's painting than in Titian's. In addition, gaze positions were more tightly focused for the former than for the latter, consistent with different allocations of viewer interest. We also investigated how gaze fixation on Eve's face affected the perceptual visibility of the parrot in Rubens's composition and how the parrot's presence versus its absence impacted gaze dynamics. Taken together, our results demonstrate that Rubens's critical deviations from Titian's painting have powerful effects on viewers' oculomotor behavior.


Subject(s)
Paintings , Parrots , Male , Animals , Humans , Eye Movements , Attention , Fixation, Ocular
4.
Behav Res Methods ; 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37507649

ABSTRACT

A guideline is proposed that comprises the minimum items to be reported in research studies involving an eye tracker and human or non-human primate participant(s). This guideline was developed over a 3-year period using a consensus-based process via an open invitation to the international eye tracking community. This guideline will be reviewed at maximum intervals of 4 years.

5.
J Vis Exp ; (194)2023 04 21.
Article in English | MEDLINE | ID: mdl-37154557

ABSTRACT

The goal of this protocol is to describe fiber-optic-bundle-coupled pre-clinical confocal laser-scanning endomicroscopy (pCLE) in its specific application to elucidate capillary blood flow effects during seizures, driven by mural cells. In vitro and in vivo cortical imaging have shown that capillary constrictions driven by pericytes can result from functional local neural activity, as well as from drug application, in healthy animals. Here, a protocol is presented on how to use pCLE to determine the role of microvascular dynamics in neural degeneration in epilepsy, at any tissue depth (specifically in the hippocampus). We describe a head restraint technique that has been adapted to record pCLE in awake animals, to address potential side-effects of anesthetics on neural activity. Using these methods, electrophysiological and imaging recordings can be conducted over several hours in deep neural structures of the brain.


Subject(s)
Capillaries , Wakefulness , Mice , Animals , Microscopy, Confocal/methods , Endoscopy , Lasers
6.
Behav Res Methods ; 55(1): 364-416, 2023 01.
Article in English | MEDLINE | ID: mdl-35384605

ABSTRACT

In this paper, we present a review of how the various aspects of any study using an eye tracker (such as the instrument, methodology, environment, participant, etc.) affect the quality of the recorded eye-tracking data and the obtained eye-movement and gaze measures. We take this review to represent the empirical foundation for reporting guidelines of any study involving an eye tracker. We compare this empirical foundation to five existing reporting guidelines and to a database of 207 published eye-tracking studies. We find that reporting guidelines vary substantially and do not match with actual reporting practices. We end by deriving a minimal, flexible reporting guideline based on empirical research (Section "An empirically based minimal reporting guideline").


Subject(s)
Eye Movements , Eye-Tracking Technology , Humans , Empirical Research
8.
Publications (Basel) ; 10(4)2022 Dec.
Article in English | MEDLINE | ID: mdl-36275197

ABSTRACT

When we believe misinformation, we have succumbed to an illusion: our perception or interpretation of the world does not match reality. We often trust misinformation for reasons that are unrelated to an objective, critical interpretation of the available data: Key facts go unnoticed or unreported. Overwhelming information prevents the formulation of alternative explanations. Statements become more believable every time they are repeated. Events are reframed or given "spin" to mislead audiences. In magic shows, illusionists apply similar techniques to convince spectators that false and even seemingly impossible events have happened. Yet, many magicians are "honest liars," asking audiences to suspend their disbelief only during the performance, for the sole purpose of entertainment. Magic misdirection has been studied in the lab for over a century. Psychological research has sought to understand magic from a scientific perspective and to apply the tools of magic to the understanding of cognitive and perceptual processes. More recently, neuroscientific investigations have also explored the relationship between magic illusions and their underlying brain mechanisms. We propose that the insights gained from such studies can be applied to understanding the prevalence and success of misinformation. Here, we review some of the common factors in how people experience magic during a performance and are subject to misinformation in their daily lives. Considering these factors will be important in reducing misinformation and encouraging critical thinking in society.

9.
Radiology ; 304(2): 274-282, 2022 08.
Article in English | MEDLINE | ID: mdl-35699581

ABSTRACT

Research has not yet quantified the effects of workload or duty hours on the accuracy of radiologists. With the exception of a brief reduction in imaging studies during the 2020 peak of the COVID-19 pandemic, the workload of radiologists in the United States has seen relentless growth in recent years. One concern is that this increased demand could lead to reduced accuracy. Behavioral studies in species ranging from insects to humans have shown that decision speed is inversely correlated to decision accuracy. A potential solution is to institute workload and duty limits to optimize radiologist performance and patient safety. The concern, however, is that any prescribed mandated limits would be arbitrary and thus no more advantageous than allowing radiologists to self-regulate. Specific studies have been proposed to determine whether limits reduce error, and if so, to provide a principled basis for such limits. This could determine the precise susceptibility of individual radiologists to medical error as a function of speed during image viewing, the maximum number of studies that could be read during a work shift, and the appropriate shift duration as a function of time of day. Before principled recommendations for restrictions are made, however, it is important to understand how radiologists function both optimally and at the margins of adequate performance. This study examines the relationship between interpretation speed and error rates in radiology, the potential influence of artificial intelligence on reading speed and error rates, and the possible outcomes of imposed limits on both caseload and duty hours. This review concludes that the scientific evidence needed to make meaningful rules is lacking and notes that regulating workloads without scientific principles can be more harmful than not regulating at all.


Subject(s)
COVID-19 , Radiology , Artificial Intelligence , Humans , Pandemics , Radiologists , United States , Workload
10.
Prog Neurobiol ; 212: 102251, 2022 05.
Article in English | MEDLINE | ID: mdl-35182707

ABSTRACT

Humans perceive millions of colors along three dimensions of color space: hue, lightness, and chroma. A major gap in knowledge is where the brain represents these specific dimensions in cortex, and how they relate to each other. Previous studies have shown that brain areas V4 and the posterior inferotemporal cortex (PIT) are central to computing color dimensions. To determine the contribution of V1 to setting up these downstream processing mechanisms, we studied cortical color responses in macaques-who share color vision mechanisms with humans. We used two-photon calcium imaging at both meso- and micro-scales and found that hue and lightness are laid out in orthogonal directions on the cortical map, with chroma represented by the strength of neuronal responses, as previously shown in PIT. These findings suggest that the earliest cortical stages of vision determine the three primary dimensions of human color perception.


Subject(s)
Brain , Macaca , Animals , Calcium , Humans
11.
Front Neurosci ; 15: 629469, 2021.
Article in English | MEDLINE | ID: mdl-34177444

ABSTRACT

Errors in radiologic interpretation are largely the result of failures of perception. This remains true despite the increasing use of computer-aided detection and diagnosis. We surveyed the literature on visual illusions during the viewing of radiologic images. Misperception of anatomical structures is a potential cause of error that can lead to patient harm if disease is seen when none is present. However, visual illusions can also help enhance the ability of radiologists to detect and characterize abnormalities. Indeed, radiologists have learned to exploit certain perceptual biases in diagnostic findings and as training tools. We propose that further detailed study of radiologic illusions would help clarify the mechanisms underlying radiologic performance and provide additional heuristics to improve radiologist training and reduce medical error.

12.
Eur J Neurosci ; 54(4): 5357-5367, 2021 08.
Article in English | MEDLINE | ID: mdl-34160864

ABSTRACT

For millennia, people have used "averted vision" to improve their detection of faint celestial objects, a technique first documented around 325 BCE. Yet, no studies have assessed gaze location during averted vision to determine what pattern best facilitates perception. Here, we characterized averted vision while recording eye-positions of dark-adapted human participants, for the first time. We simulated stars of apparent magnitudes 3.3 and 3.5, matching their brightness to Megrez (the dimmest star in the Big Dipper) and Tau Ceti. Participants indicated whether each star was visible from a series of fixation locations, providing a comprehensive map of detection performance in all directions. Contrary to prior predictions, maximum detection was first achieved at ~8° from the star, much closer to the fovea than expected from rod-cone distributions alone. These findings challenge the assumption of optimal detection at the rod density peak and provide the first systematic assessment of an age-old facet of human vision.


Subject(s)
Vision, Ocular , Humans
13.
Sci Rep ; 11(1): 3612, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574386

ABSTRACT

Troxler fading, the perceptual disappearance of stationary images upon sustained fixation, is common for objects with equivalent luminance to that of the background. Previous work showed that variations in microsaccadic rates underlie the perceptual vanishing and intensification of simple stimuli, such as Gabor patches. Here, we demonstrate that microsaccade dynamics also contribute to Troxler fading and intensification during the viewing of representational art. Participants fixated a small spot while viewing either a Gabor patch on a blank background, or Monet's painting "Impression, Sunrise." They continuously reported, via button press/release, whether the Gabor patch, or the sun in Monet's painting, was fading versus intensifying, while their eye movements were recorded with high precision. Microsaccade rates peaked before reports of increased visibility, and dropped before reports of decreased visibility or fading, both when viewing Gabor patches and Monet's sun. These results reveal that the relationship between microsaccade production and the reversal and prevention of Troxler fading applies not only to the viewing of contrived stimuli, but also to the observation of "Impression, Sunrise." Whether or not perceptual fading was consciously intended by Monet, our findings indicate that observers' oculomotor dynamics are a contributor to the cornerstone of Impressionism.


Subject(s)
Eye Movements/physiology , Saccades/physiology , Vision, Ocular/physiology , Visual Perception/physiology , Adolescent , Adult , Female , Fixation, Ocular/physiology , Humans , Male , Middle Aged , Photic Stimulation , Young Adult
14.
J Vis ; 20(10): 17, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33057623

ABSTRACT

Supported by guidance from training during residency programs, radiologists learn clinically relevant visual features by viewing thousands of medical images. Yet the precise visual features that expert radiologists use in their clinical practice remain unknown. Identifying such features would allow the development of perceptual learning training methods targeted to the optimization of radiology training and the reduction of medical error. Here we review attempts to bridge current gaps in understanding with a focus on computational saliency models that characterize and predict gaze behavior in radiologists. There have been great strides toward the accurate prediction of relevant medical information within images, thereby facilitating the development of novel computer-aided detection and diagnostic tools. In some cases, computational models have achieved equivalent sensitivity to that of radiologists, suggesting that we may be close to identifying the underlying visual representations that radiologists use. However, because the relevant bottom-up features vary across task context and imaging modalities, it will also be necessary to identify relevant top-down factors before perceptual expertise in radiology can be fully understood. Progress along these dimensions will improve the tools available for educating new generations of radiologists, and aid in the detection of medically relevant information, ultimately improving patient health.


Subject(s)
Fixation, Ocular/physiology , Learning/physiology , Radiologists , Visual Perception/physiology , Diagnostic Imaging , Humans
15.
J Vis Exp ; (161)2020 07 17.
Article in English | MEDLINE | ID: mdl-32744531

ABSTRACT

In this paper, we outline a method for surgical preparation that allows for the practical planning of a variety of neurosurgeries in NHPs solely using data extracted from magnetic resonance imaging (MRI). This protocol allows for the generation of 3D printed anatomically accurate physical models of the brain and skull, as well as an agarose gel model of the brain modeling some of the mechanical properties of the brain. These models can be extracted from MRI using brain extraction software for the model of the brain, and custom code for the model of the skull. The preparation protocol takes advantage of state-of-the-art 3D printing technology to make interfacing brains, skulls, and molds for gel brain models. The skull and brain models can be used to visualize brain tissue inside the skull with the addition of a craniotomy in the custom code, allowing for better preparation for surgeries directly involving the brain. The applications of these methods are designed for surgeries involved in neurological stimulation and recording as well as injection, but the versatility of the system allows for future expansion of the protocol, extraction techniques, and models to a wider scope of surgeries.


Subject(s)
Magnetic Resonance Imaging/methods , Neurosurgery/methods , Animals , Primates
16.
Nat Commun ; 11(1): 697, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32019929

ABSTRACT

The integration of synaptic inputs onto dendrites provides the basis for neuronal computation. Whereas recent studies have begun to outline the spatial organization of synaptic inputs on individual neurons, the underlying principles related to the specific neural functions are not well understood. Here we perform two-photon dendritic imaging with a genetically-encoded glutamate sensor in awake monkeys, and map the excitatory synaptic inputs on dendrites of individual V1 superficial layer neurons with high spatial and temporal resolution. We find a functional integration and trade-off between orientation-selective and color-selective inputs in basal dendrites of individual V1 neurons. Synaptic inputs on dendrites are spatially clustered by stimulus feature, but functionally scattered in multidimensional feature space, providing a potential substrate of local feature integration on dendritic branches. Furthermore, apical dendrite inputs have larger receptive fields and longer response latencies than basal dendrite inputs, suggesting a dominant role for apical dendrites in integrating feedback in visual information processing.


Subject(s)
Neurons/physiology , Spatial Navigation , Animals , Dendrites/physiology , Excitatory Postsynaptic Potentials , Macaca , Models, Neurological , Synapses/physiology
17.
J Eye Mov Res ; 12(6)2020 May 16.
Article in English | MEDLINE | ID: mdl-33828756

ABSTRACT

Visual scene characteristics can affect various aspects of saccade and microsaccade dynamics. For example, blank visual scenes are known to elicit diminished saccade and microsaccade production, compared to natural scenes. Similarly, microsaccades are less frequent in the dark. Yet, the extent to which foveal versus peripheral visual information contribute to microsaccade production remains unclear: because microsaccade directions are biased towards covert attention locations, it follows that peripheral visual stimulation could suffice to produce regular microsaccade dynamics, even without foveal stimulation being present. Here we determined the characteristics of microsaccades as a function of foveal and/or peripheral visual stimulation, while human subjects conducted four types of oculomotor tasks (fixation, free viewing, guided viewing and passive viewing). Foveal information was either available, or made unavailable, by the presentation of simulated scotomas. We found foveal stimulation to be critical for microsaccade production, and peripheral stimulation, by itself, to be insufficient to yield normal microsaccades. In each oculomotor task, microsaccade production decreased when scotomas blocked foveal stimulation. Across comparable foveal stimulation conditions, the type of peripheral stimulation (static versus dynamic) moreover affected microsaccade production, with dynamic backgrounds resulting in lower microsaccadic rates than static backgrounds. These results indicate that a foveal visual anchor is necessary for normal microsaccade generation. Whereas peripheral visual stimulation, on its own, does not suffice for normal microsaccade production, it can nevertheless modulate microsaccadic characteristics. These findings extend our current understanding of the links between visual input and ocular motor control, and may therefore help improve the diagnosis and treatment of ophthalmic conditions that degrade central vision, such as age-related macular degeneration.

18.
J Eye Mov Res ; 12(6)2020 May 15.
Article in English | MEDLINE | ID: mdl-33828760

ABSTRACT

Across a wide variety of research environments, the recording of microsaccades and other fixational eye movements has provided insight and solutions into practical problems. Here we review the literature on fixational eye movements-especially microsaccades-in applied and ecologically-valid scenarios. Recent technical advances allow noninvasive fixational eye movement recordings in real-world contexts, while observers perform a variety of tasks. Thus, fixational eye movement measures have been obtained in a host of real-world scenarios, such as in connection with driver fatigue, vestibular sensory deprivation in astronauts, and elite athletic training, among others. Here we present the state of the art in the practical applications of fixational eye movement research, examine its potential future uses, and discuss the benefits of including microsaccade measures in existing eye movement detection technologies. Current evidence supports the inclusion of fixational eye movement measures in real-world contexts, as part of the development of new or improved oculomotor assessment tools. The real-world applications of fixational eye movement measurements will only grow larger and wider as affordable high-speed and high-spatial resolution eye trackers become increasingly prevalent.

19.
Acad Radiol ; 27(1): 26-38, 2020 01.
Article in English | MEDLINE | ID: mdl-31818384

ABSTRACT

As the first step in image interpretation is detection, an error in perception can prematurely end the diagnostic process leading to missed diagnoses. Because perceptual errors of this sort-"failure to detect"-are the most common interpretive error (and cause of litigation) in radiology, understanding the nature of perceptual expertise is essential in decreasing radiology's long-standing error rates. In this article, we review what constitutes a perceptual error, the existing models of radiologic image perception, the development of perceptual expertise and how it can be tested, perceptual learning methods in training radiologists, and why understanding perceptual expertise is still relevant in the era of artificial intelligence. Adding targeted interventions, such as perceptual learning, to existing teaching practices, has the potential to enhance expertise and reduce medical error.


Subject(s)
Artificial Intelligence , Radiology , Humans , Learning , Radiography
20.
J Neurosci ; 39(42): 8267-8274, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619496

ABSTRACT

Novel genetically encoded tools and advanced microscopy methods have revolutionized neural circuit analyses in insects and rodents over the last two decades. Whereas numerous technical hurdles originally barred these methodologies from success in nonhuman primates (NHPs), current research has started to overcome those barriers. In some cases, methodological advances developed with NHPs have even surpassed their precursors. One such advance includes new ultra-large imaging windows on NHP cortex, which are larger than the entire rodent brain and allow analysis unprecedented ultra-large-scale circuits. NHP imaging chambers now remain patent for periods longer than a mouse's lifespan, allowing for long-term all-optical interrogation of identified circuits and neurons over timeframes that are relevant to human cognitive development. Here we present some recent imaging advances brought forth by research teams using macaques and marmosets. These include technical developments in optogenetics; voltage-, calcium- and glutamate-sensitive dye imaging; two-photon and wide-field optical imaging; viral delivery; and genetic expression of indicators and light-activated proteins that result in the visualization of tens of thousands of identified cortical neurons in NHPs. We describe a subset of the many recent advances in circuit and cellular imaging tools in NHPs focusing here primarily on the research presented during the corresponding mini-symposium at the 2019 Society for Neuroscience annual meeting.


Subject(s)
Brain/diagnostic imaging , Nerve Net/diagnostic imaging , Neuroimaging/methods , Neurons/physiology , Animals , Brain Mapping , Microscopy, Fluorescence, Multiphoton , Optogenetics , Primates
SELECTION OF CITATIONS
SEARCH DETAIL