Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Phytopathology ; 114(1): 126-136, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37531626

ABSTRACT

Athelia rolfsii, causal agent of "southern blight" disease, is a soilborne fungal pathogen with a wide host range of more than 500 species. This study's objectives were to (i) quantify the effects of two environmental factors, temperature and soil moisture, on germination of A. rolfsii inoculum (sclerotia), which is a critical event for the onset of disease epidemics and (ii) predict the timing of sclerotial germination by applying population-based threshold-type hydrothermal time (HTT) models. We conducted in vitro germination experiments with three isolates of A. rolfsii isolated from peanuts, which were tested at five temperatures (T), ranging from 17 to 40°C, four matric potentials (Ψm) between -0.12 and -1.57 MPa, and two soil types (fine sand and loamy fine sand), using a factorial design. When Ψm was maintained between -0.12 and -0.53 MPa, T from 22 to 34°C was found to be conducive to sclerotial germination (>50%). The HTT models were fitted for a range of T (22 to 34°C) and Ψm (-0.12 to -1.57 MPa) that accounted for 84% or more of variation in the timing of sclerotial germination. The estimated base T ranged between 0 and 4.5°C and the estimated base Ψm between -2.96 and -1.52 MPa. The results suggest that the HTT modeling approach is a suitable means of predicting the timing of A. rolfsii sclerotial germination. This HTT methodology can potentially be tested to fine-tune fungicide application timing and in-season A. rolfsii management strategies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Ascomycota , Basidiomycota , Germination , Sand , Plant Diseases/microbiology , Soil
2.
Microorganisms ; 11(12)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38138146

ABSTRACT

The introduction of rhizoma peanut (RP Arachis glabrata Benth) into bahiagrass (Paspalum notatum Flüggé) may require time to develop stable plant-soil microbe interactions as the microbial legacy of the previous plant community may be long-lasting. A previous study showed that <2 years of introducing rhizoma peanut into bahiagrass pastures minimally affected soil bacterial diversity and community composition. In this study, we compared the effects of the long-term inclusion of rhizoma peanut (>8 years) into bahiagrass on soil bacterial diversity and community composition against their monocultures at 0 to 15 and 15 to 30 cm soil depths using next-generation sequencing to target bacterial 16S V3-V4 regions. We observed that a well-established RP-bahiagrass mixed stand led to a 36% increase in bacterial alpha diversity compared to the bahiagrass monoculture. There was a shift from a soil bacterial community dominated by Proteobacteria (~26%) reported in other bahiagrass and rhizoma peanut studies to a soil bacterial community dominated by Firmicutes (39%) in our study. The relative abundance of the bacterial genus Crossiella, known for its antimicrobial traits, was enhanced in the presence of RP. Differences in soil bacterial diversity and community composition were substantial between 0 to 15 and 15 to 30 cm soil layers, with N2-fixing bacteria belonging to the phylum Proteobacteria concentrated in 0 to 15 cm. Introducing RP into bahiagrass pastures is a highly sustainable alternative to mineral N fertilizer inputs. Our results provide evidence that this system also promotes greater soil microbial diversity and is associated with unique taxa that require further study to better understand their contributions to healthy pastures.

3.
Microb Ecol ; 86(4): 2703-2715, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37507489

ABSTRACT

Soil microorganisms play key roles in soil nutrient transformations and have a notable effect on plant growth and health. Different plant genotypes can shape soil microbial patterns via the secretion of root exudates and volatiles, but it is uncertain how a difference in soil microorganisms induced by crop cultivars will respond to short-term seasonal variations. A field experiment was conducted to assess the changes in soil bacterial communities of seven rhizoma peanut (Arachis glabrata Benth, RP) cultivars across two growing seasons, April (Spring season) and October (Fall season). Soils' bacterial communities were targeted using 16S rRNA gene amplicon sequencing. Bacterial community diversity and taxonomic composition among rhizoma peanut cultivars were significantly affected by seasons, cultivars, and their interactions (p < 0.05). Alpha diversity, as estimated by the OTU richness and Simpson index, was around onefold decrease in October than in April across most of the RP cultivars, while the soils from Arblick and Latitude had around one time higher alpha diversity in both seasons compared with other cultivars. Beta diversity differed significantly in April (R = 0.073, p < 0.01) and October (R = 0.084, p < 0.01) across seven cultivars. Bacterial dominant taxa (at phylum and genus level) were strongly affected by seasons and varied towards more dominant groups that have functional potentials involved in nutrient cycling from April to October. A large shift in water availability induced by season variations in addition to host cultivar's effects can explain the observed patterns in diversity, composition, and co-occurrence of bacterial taxa. Overall, our results demonstrate an overriding effect of short-term seasonal variations on soil bacterial communities associated with different crop cultivars. The findings suggest that season-induced shifts in environmental conditions could exert stronger impacts on soil microorganisms than the finer-scale rhizosphere effect from crop cultivars, and consequently influence largely microbe-mediated soil processes and crop health in agricultural ecosystems.


Subject(s)
Arachis , Soil , Seasons , Arachis/microbiology , Ecosystem , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Soil Microbiology
4.
J Environ Qual ; 52(4): 847-858, 2023.
Article in English | MEDLINE | ID: mdl-36897284

ABSTRACT

Integrated crop-livestock systems provide an array of benefits to agricultural systems, including a reduction in nitrogen (N) leaching. A farm approach to integrate crops and livestock is the adoption of grazed cover crops. Moreover, the addition of perennial grasses into crop rotations may improve soil organic matter and decrease N leaching. However, the effect of grazing intensity in such systems is not fully understood. This 3-year study investigated short-term effects of cover crop planting (cover and no cover), cropping system (no grazing, integrated crop-livestock [ICL], and sod-based rotation [SBR]), grazing intensity (heavy, moderate, and light grazing), and cool-season N fertilization (0, 34, and 90 kg N ha-1 ) on NO3 -N and NH4 -N concentration in leachate, and cumulative N leaching by using 1.5-m deep drain gauges. The ICL was a cool-season cover crop-cotton (Gossypium hirsutum L.) rotation, whereas SBR was a cool-season cover crop-bahiagrass (Paspalum notatum Flüggé) rotation. There was a treatment × year × season for cumulative N leaching (p = 0.035). Further contrast analysis indicated that cover crops decreased cumulative N leaching compared to no cover (18 vs. 32 kg N ha-1 season-1 ). Nitrogen leaching was lesser for grazed compared to nongrazed systems (14 vs. 30 kg N ha-1 season-1 ). Treatments containing bahiagrass had lesser NO3 -N concentration in leachate (7 vs. 11 mg L-1 ) and cumulative N leaching (8 vs. 20 kg N ha-1 season-1 ) compared to ICL systems. Adding cover crops can reduce cumulative N leaching in crop-livestock systems; moreover, warm-season perennial forages can further enhance this benefit.


Subject(s)
Livestock , Nitrates , Animals , Florida , Soil , Agriculture , Crops, Agricultural , Nitrogen
5.
Appl Environ Microbiol ; 88(21): e0094222, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36226941

ABSTRACT

Grasses harbor diverse fungi, including some that produce mycotoxins or other secondary metabolites. Recently, Florida cattle farmers reported cattle illness, while the cattle were grazing on warm-season grass pastures, that was not attributable to common causes, such as nutritional imbalances or nitrate toxicity. To understand correlations between grass mycobiome and mycotoxin production, we investigated the mycobiomes associated with five prominent, perennial forage and weed grasses [Paspalum notatum Flügge, Cynodon dactylon (L.) Pers., Paspalum nicorae Parodi, Sporobolus indicus (L.) R. Br., and Andropogon virginicus (L.)] collected from six Florida pastures actively grazed by livestock. Black fungal stromata of Myriogenospora and Balansia were observed on P. notatum and S. indicus leaves and were investigated. High-throughput amplicon sequencing was applied to delineate leaf mycobiomes. Mycotoxins from P. notatum leaves were inspected using liquid chromatography-mass spectrometry (LC-MS/MS). Grass species, cultivars, and geographic localities interactively affected fungal community assemblies of asymptomatic leaves. Among the grass species, the greatest fungal richness was detected in the weed S. indicus. The black fungal structures of P. notatum leaves were dominated by the genus Myriogenospora, while those of S. indicus were codominated by the genus Balansia and a hypermycoparasitic fungus of the genus Clonostachys. When comparing mycotoxins detected in P. notatum leaves with and without M. atramentosa, emodin, an anthraquinone, was the only compound which was significantly different (P < 0.05). Understanding the leaf mycobiome and the mycotoxins it may produce in warm-season grasses has important implications for how these associations lead to secondary metabolite production and their subsequent impact on animal health. IMPORTANCE The leaf mycobiome of forage grasses can have a major impact on their mycotoxin contents of forage and subsequently affect livestock health. Despite the importance of the cattle industry in warm-climate regions, such as Florida, studies have been primarily limited to temperate forage systems. Our study provides a holistic view of leaf fungi considering epibiotic, endophytic, and hypermycoparasitic associations with five perennial, warm-season forage and weed grasses. We highlight that plant identity and geographic location interactively affect leaf fungal community composition. Yeasts appeared to be an overlooked fungal group in healthy forage mycobiomes. Furthermore, we detected high emodin quantities in the leaves of a widely planted forage species (P. notatum) whenever epibiotic fungi occurred. Our study demonstrated the importance of identifying fungal communities, ecological roles, and secondary metabolites in perennial, warm-season grasses and their potential for interfering with livestock health.


Subject(s)
Emodin , Mycobiome , Mycotoxins , Cattle , Animals , Poaceae/chemistry , Seasons , Chromatography, Liquid , Tandem Mass Spectrometry , Livestock , Geography , Plant Leaves , Fungal Structures
6.
Sci Rep ; 12(1): 17138, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229636

ABSTRACT

Stable isotopes are useful for estimating livestock diet selection. The objective was to compare δ13C and δ15N to estimate diet proportion of C3-C4 forages when steers (Bos spp.) were fed quantities of rhizoma peanut (Arachis glabrata; RP; C3) and bahiagrass (Paspalum notatum; C4).Treatments were proportions of RP with bahiagrass hay: 100% bahiagrass (0%RP); 25% RP + 75% bahiagrass (25%RP); 50% RP + 50% bahiagrass (50%RP); 75% RP + 25% bahiagrass (75%RP); and 100% RP (100% RP). Feces, plasma, red blood cell (RBC), and hair were collected at 8-days intervals, for 32 days. Two-pool mixing model was utilized to back-calculate the proportion of RP based on the sample and forage δ13C or δ15N. Feces showed changes using δ13C by 8 days, and adj. R2 between predicted and observed RP proportion was 0.81 by 8 days. Plasma, hair, and RBC required beyond 32-days to reach equilibrium, therefore were not useful predictors of diet composition during the study. Diets were best represented using fecal δ13C at both 8-days and 32-days. By 32-days, fecal δ15N showed promise (R2 = 0.71) for predicting diet composition in C3-C4 diets. Further studies are warranted to further corroborate fecal δ15N as a predictor of diet composition in cattle.


Subject(s)
Diet , Paspalum , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Feces , Isotopes
7.
J Environ Qual ; 51(1): 55-65, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34978336

ABSTRACT

Incorporating legumes is one option for improving pasture fertility, sustainability, and biodiversity. Diazotrophic microorganisms, including rhizobia that form symbioses with legumes, represent a small fraction of the total soil microbial community. Yet, they can offset nitrogen (N) fertilizer inputs through their ability to convert atmospheric N2 into plant-usable N via biological N2 fixation (BNF). This study used amplicon sequencing of 16S rRNA genes to investigate soil bacterial community composition and diversity in grazed 'Argentine' bahiagrass (Paspalum notatum Flügge) pastures where N fertilizer was supplanted with legume-derived N from BNF in some treatments. Treatments consisted of bahiagrass fertilized with (a) mineral N (224 kg N ha-1  yr-1 ), (b) combination mineral N (34 kg N ha-1  yr-1 ) and legume-derived N via cool-season clover (CSC) (Trifolium spp.) mix, or (c) combination mineral N (34 kg N ha-1  yr-1 ) and legume-derived N via CSC mix and strips of Ecoturf rhizoma peanut (Arachis glabrata Benth.). Bradyrhizobium spp. relative abundance was 44% greater in the mixed pasture. Other bacterial genera with BNF or denitrification potentials were greater in pastures with legumes, whereas sequences assigned to genera associated with high litter turnover were greater in bahiagrass pastures receiving only mineral N. Soil bacteria alpha diversity was greater in pastures receiving 34 kg ha-1  yr-1 N fertilizer application and the CSC mix than in pastures with the CSC mix and rhizoma peanut strips. Our results demonstrate soil microbial community shifts that may affect soil C and N cycling in pastures common to the southeastern United States.


Subject(s)
Arachis , Soil , Bacteria/genetics , Florida , RNA, Ribosomal, 16S/genetics
8.
Sci Total Environ ; 744: 140809, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-32712418

ABSTRACT

A system dynamics modeling approach was used to assess the potential impact of intentional struvite crystallization recovery on wastewater treatment plant (WWTP) allocation of N and P in effluent and biosolids outputs. Struvite crystallization has been used to recover wastewater N and P and produce valuable fertilizer. However, it is often overlooked whether additional benefits may be realized by diverting N and P from other fates. A system dynamics model was used with operational data from three activated-sludge WWTPs in North Florida. Incorporating struvite crystallization reduced the effluent P load by 37 to 100%, dependent upon the WWTP. This may translate into substantial savings for systems facing severe restrictions in effluent P release outside the plant. Additionally, biosolids P load reductions ranged from 17 to 46%. The model also predicted a 37% average increase in the biosolids N:P ratio. Increasing the N:P ratio may allow for greater biosolids land-application rates where P fertilizer restrictions exist. In comparison, the N load reductions were much less dramatic, i.e. below 10% reduction from the effluent and 14% from the biosolids. Most N inputs into an activated-sludge type WWTP are likely lost through denitrification during wastewater processing and struvite does not appear to be a significant means of recovering N from small WWTPs. However, incorporating struvite recovery into even the simplest WWTPs reduces effluent post-treatment needs and results in a more useful biosolids product.

9.
Ecol Evol ; 9(22): 12676-12687, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31788206

ABSTRACT

There is a growing awareness of the importance of soil microorganisms in agricultural management practices. Currently, much less is known about whether different crop cultivar has an effect on the taxonomic structure and diversity, and specific functions of soil bacterial communities. Here, we examined the changes of the diversity and composition and enzyme-encoding nitrogenase genes in a long-term field experiment with seven different rhizoma peanut cultivars in southeastern USA, coupling high-throughput 16S rRNA gene sequencing and the sequence-based function prediction with Tax4Fun. Of the 32 phyla detected (Proteobacteria class), 13 were dominant: Acidobacteria, Alphaproteobacteria, Actinobacteria, Betaproteobacteria, Bacteroidetes, Verrucomicrobia, Gammaproteobacteria, Deltaproteobacteria, Gemmatimonadetes, Firmicutes, Nitrospirae, Chloroflexi, and Planctomycetes (relative abundance >1%). We found no evidence that the diversity and composition of bacterial communities were significantly different among different cultivars, but the abundance of some dominant bacterial groups that have N-fixation potentials (at broad or fine taxonomic level) and predicted abundances of some enzyme-encoding nitrogenase genes showed significant across-cultivar differences. The nitrogenase genes were notably abundant in Florigraze and Latitude soils while remarkably lower in Arbook and UF_TITO soils when compared with other cultivars, indicating different nitrogen fixation potentials among different cultivars. The findings also suggest that the abundance of certain bacterial taxa and the specific function bacteria perform in ecosystems can have an inherent association. Our study is helpful to understand how microbiological responses and feedback to different plant genotypes through the variation in structure and function of their communities in the rhizosphere.

10.
PeerJ ; 7: e7014, 2019.
Article in English | MEDLINE | ID: mdl-31179193

ABSTRACT

BACKGROUND: Cultivars of bahiagrass (Paspalum notatum Flüggé) are widely used for pasture in the Southeastern USA. Soil microbial communities are unexplored in bahiagrass and they may be cultivar-dependent, as previously proven for other grass species. Understanding the influence of cultivar selection on soil microbial communities is crucial as microbiome taxa have repeatedly been shown to be directly linked to plant performance. OBJECTIVES: This study aimed to determine whether different bahiagrass cultivars interactively influence soil bacterial and fungal communities. METHODS: Six bahiagrass cultivars ('Argentine', 'Pensacola', 'Sand Mountain', 'Tifton 9', 'TifQuik', and 'UF-Riata') were grown in a randomized complete block design with four replicate plots of 4.6 × 1.8 m per cultivar in a Rhodic Kandiudults soil in Northwest Florida, USA. Three soil subsamples per replicate plot were randomly collected. Soil DNA was extracted and bacterial 16S ribosomal RNA and fungal ribosomal internal transcribed spacer 1 genes were amplified and sequenced with one Illumina Miseq Nano. RESULTS: The soil bacterial and fungal community across bahiagrass cultivars showed similarities with communities recovered from other grassland ecosystems. Few differences in community composition and diversity of soil bacteria among cultivars were detected; none were detected for soil fungi. The relative abundance of sequences assigned to nitrite-oxidizing Nitrospira was greater under 'Sand Mountain' than 'UF-Riata'. Indicator species analysis revealed that several bacterial and fungal indicators associated with either a single cultivar or a combination of cultivars are likely to be plant pathogens or antagonists. CONCLUSIONS: Our results suggest a low impact of plant cultivar choice on the soil bacterial community composition, whereas the soil fungal community was unaffected. Shifts in the relative abundance of Nitrospira members in response to cultivar choice may have implications for soil N dynamics. The cultivars associated with presumptive plant pathogens or antagonists indicates that the ability of bahiagrass to control plant pathogens may be cultivar-dependent, however, physiological studies on plant-microbe interactions are required to confirm this presumption. We therefore suggest that future studies should explore the potential of different bahiagrass cultivars on plant pathogen control, particularly in sod-based crop rotation.

11.
Ciênc. rural (Online) ; 49(1): e20170592, 2019. tab, graf
Article in English | LILACS | ID: biblio-1045220

ABSTRACT

ABSTRACT: Biochar has been used worldwide as an efficient soil amendment due to its beneficial interaction with soil particles and nutrients; however, studies on the effect of biochar on the availability of nutrients such as N and P in tropical soils are still missing. The objective of the study was to evaluate the effect of different types and doses of biochars on the concentration and uptake of N and P in Indian mustard plants (Brassica juncea L.) grown in a Cu contaminated soil during three successive growth cycles. The greenhouse experiment was set up as randomized block design in a 3x3 factorial scheme, with 3 types of biochars (coconut shell, orange bagasse and sewage sludge) and three rates of application (0, 30 and 60t ha-1), and 4 replicates. Biochar increased plant growth by approximately 30 to 224%; however, the orange bagasse biochar was the most effective. Biochar reduced plant N concentration in approximately 15-43%, regardless of the rate of application, indicating the need to carefully adjust N fertilization. In the last growth cycle, biochar from coconut shell and orange bagasse improved the N uptake efficiency suggesting a better amelioration effect with ageing in soil. Biochar did not affect P nutrition in Indian mustard to a great extent; however, it significantly decreased the N:P ratio in the plant.


RESUMO: O biocarvão tem sido usado mundialmente como um eficiente insumo agrícola devido à sua interação benéfica com as partículas e os nutrientes do solo. Contudo, seu efeito na disponibilidade de nutrientes como N e P em solos tropicais tem sido pouco investigado. O objetivo do estudo foi avaliar o efeito de diferentes tipos e doses de biocarvão na concentração e na eficiência de absorção de N e P em plantas de mostarda indiana (Brassica juncea L.) cultivadas em solo contaminado com cobre, em três ciclos sucessivos de cultivo. O estudo foi desenvolvido em delineamento de blocos casualizados, em esquema fatorial 3x3, em casa de vegetação, com três tipos de biocarvão (casca de coco, bagaço de laranja e lodo de esgoto) e três doses (0, 30 e 60t ha-1). Todos os biocarvões aumentaram o crescimento das plantas, com variação de 30 a 224%. No entanto, o biocarvão de bagaço de laranja foi o mais eficiente. A presença de biocarvão reduziu a concentração de N nas plantas em torno de 14 a 43%, independente da dose aplicada, indicando a necessidade de monitoramento mais cuidadoso da fertilização nitrogenada. Os biocarvões de casca de coco e bagaço de laranja melhoraram a eficiência da planta na absorção de N no terceiro ciclo de cultivo, indicando melhor efeito com o tempo de contato como o solo. O uso de biocarvão teve pouca influência na nutrição fosfatada na mostarda indiana, mas diminuiu significativamente a relação N:P.

12.
Chemosphere ; 201: 278-285, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29525655

ABSTRACT

Copper contamination and toxicity in soils is a worldwide problem, especially in areas where copper-based fungicides are applied. Indian mustard (Brassica juncea L.) plants are used in phytoremediation and are also edible crops commonly cultivated in organic agricultural areas. Application of biochar to Cu contaminated soils may reduce Cu availability and uptake, thereby allowing for greater Indian mustard production. A (3 × 2) + 1) experiment in a randomized complete block design was used to evaluate the effect of three different biochars (coconut shell, orange bagasse and sewage sludge) and two application rates (30 and 60 t ha-1) on Cu uptake by Indian mustard during three successive growth cycles and Cu immobilization in soil, under greenhouse conditions. Coconut husk biochar did not influence available soil Cu; however, its presence increased shoot Cu uptake by 117% and 38% in the two last growth cycles. Orange bagasse biochar, at the 60 t ha-1 application rate, reduced Cu availability, but it was not effective in reducing Cu uptake. Sewage sludge biochar did not affect Cu availability and caused an approximated 100% increase in shoot Cu uptake at the highest application rate. Therefore, the orange bagasse biochar is the most effective whereas the sewage sludge biochar is the least in Cu immobilization. None of the biochars was shown to be suitable as soil amendment to reduce the uptake of Cu by Indian mustard. However, coconut shell and sewage sludge biochar can be effectively applied to soil as an auxiliary tool to remediate Cu-contaminated soils.


Subject(s)
Biodegradation, Environmental , Charcoal/pharmacology , Copper/analysis , Mustard Plant , Charcoal/chemistry , Copper/toxicity , Sewage , Soil/chemistry , Soil Pollutants/analysis
13.
Ciênc. rural ; 47(1): 20160064, 2017. graf
Article in English | LILACS | ID: lil-797927

ABSTRACT

ABSTRACT: Sewage sludge has long been successfully used in the production of nursery plants; however, some restriction may apply due to its high pathogenic characteristics. The process of charring the organic waste significantly reduces that undesired component and may be as effective as the non-charred residue. The aim of this study was to evaluate the effect of sewage sludge biochar on the growth and morphological traits of eucalyptus ( Eucalyptus grandis L.) seedlings, and compare results with those observed when using uncharred sewage sludge. Treatments were arranged in a completely randomized design, in a 2 x 2 factorial scheme, with four replications. Charred and non-charred sewage sludge were tested with and without NPK addition. A control treatment was also evaluated. Ten weeks old eucalyptus seedlings were transferred to the pots and grew for eight weeks. Chlorophyll content, plant height and stem diameter were measured at 0, 30 and 60 days after transplant. Shoot and root biomass were measured after plant harvest. Dickson Quality Index was calculated to evaluate the overall quality of seedlings. Biochar was effective in improving the seedlings quality, and had similar effects as the non-charred waste. Therefore, sewage sludge biochar has the potential to improve the process of production of forest species seedlings and further reduce the environmental risks associated with the use of non-charred sewage sludge.


RESUMO: O lodo de esgoto tem sido usado com sucesso há muito tempo na produção de mudas de espécies florestais em viveiro. Contudo, algumas restrições se aplicam devido às suas características patogênicas. O processo de carbonização desse resíduo orgânico reduz significativamente esse componente, resultando num material que pode ser tão efetivo quanto a matéria prima original. O objetivo do estudo foi avaliar o efeito do biocarvão de lodo de esgoto no crescimento e nos parâmetros morfológicos de mudas de eucalipto ( Eucalyptus grandis L.), e comparar os resultados com aqueles observados para as mudas tratadas com lodo de esgoto. Os tratamentos foram distribuídos em delineamento inteiramente casualizado, em esquema fatorial 2 x 2, com quatro repetições. O lodo de esgoto, carbonizado e não carbonizado, foi testado com e sem a adição de adubação NPK. Um tratamento controle foi avaliado também. Mudas de eucalipto com 10 semanas foram transferidas para vasos contendo os tratamentos, onde cresceram por 60 dias. Teor de clorofila, altura da planta e diâmetro do coleto foram avaliados aos 0, 30 e 60 dias. A biomassa da parte aérea e da raiz foi avaliada após a colheita. O índice de qualidade de Dickson foi calculado para avaliar a qualidade geral das mudas. O biocarvão foi eficiente em melhorar a qualidade das mudas e seu efeito foi similar ao do lodo de esgoto. Portanto, esse biocarvão tem o potencial de melhorar o processo de produção de mudas de espécies florestais em viveiro, e pode ainda reduzir os riscos ambientais associados ao uso de lodo de esgoto.

14.
Int J Phytoremediation ; 14(10): 1010-23, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22908661

ABSTRACT

Various progenies of Eucalyptus grandis and E. amplifolia, and clones of Populus deltoides, were evaluated for plant removal of nitrogen (N) and phosphorus (P) for 26 months at a municipal waste spray field in north Florida. Tertiary treated wastewater containing 2.73 mg L(-1) nitrate N and 0.30 mg L(-1) total P was applied using sprinkler irrigation (93.8 m3 ha(-1) d(-1)) to fast growing trees utilized for bioenergy. Eucalyptus amplifolia and E. grandis survived and grew very poorly as the result of severe winter injury in two successive years and were not evaluated for nutrient removal. Survival and growth of P. deltoides demonstrated suitability for phytoremediation, and selected clones were evaluated for biomass and nutrient content. Removals of total N (TN) and total P (TP) were greatest for main stem (36% and 44%, respectively) and foliage (44% and 36%, respectively). Low biomass producing clones generally had higher nutrient concentrations, but high biomass producing clones removed more TN and TP. Approximately 789 kg ha(-1) TN and 103 kg ha(-1) TP were removed by the highest biomass producing P. deltoides clone, representing 215% of N and 615% of P inputs.


Subject(s)
Biodegradation, Environmental , Eucalyptus/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Populus/metabolism , Waste Disposal, Fluid/methods , Aerosols , Nitrogen/chemistry , Phosphorus/chemistry , Soil , Soil Pollutants/chemistry , Soil Pollutants/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...