Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Microbiol Resour Announc ; 13(4): e0004324, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38426731

ABSTRACT

Methanosphaera spp. are methylotrophic methanogenic archaea and members of the order Methanobacteriales with few cultured representatives. Methanosphaera sp. ISO3-F5 was isolated from sheep rumen contents in New Zealand. Here, we report its complete genome, consisting of a large chromosome and a megaplasmid (GenBank accession numbers CP118753 and CP118754, respectively).

2.
Reprod Fertil Dev ; 362024 Feb.
Article in English | MEDLINE | ID: mdl-38402905

ABSTRACT

CONTEXT: Declining fertility is an issue in multiple mammalian species. As the site of fertilisation and early embryo development, the oviduct plays a critical role in embryo survival, yet there is a paucity of information on how the oviduct regulates this process. AIMS: We hypothesised that differences in steroid hormone signalling and/or immune function would be observed in a model of poor embryo survival, the peripubertal ewe. METHODS: We examined expression of steroid hormones in systemic circulation, oviductal expression of oestrogen receptorαand genes important in steroid hormone signalling, and immune function in pregnant and cyclic peripubertal and adult ewes on day 3 after oestrus. KEY RESULTS: Concentrations of progesterone, but not oestradiol, were decreased in the peripubertal ewe compared to the adult ewe. Oestrogen receptorαprotein expression was increased in the peripubertal ewe, but pathway analysis of gene expression revealed downregulation of the oestrogen signalling pathway compared to the adult ewe. Differential expression of several genes involved in immune function between the peripubertal and adult ewe was consistent with an unfavourable oviductal environment in the peripubertal ewe lamb. Oestradiol concentration was positively correlated with the expression of multiple genes involved in the regulation of immune function. CONCLUSIONS: Differences in the immune environment of the oviduct, potentially linked to differential modulation by steroid hormones, may partially underly the poor fertilisation and early embryo survival observed in the peripubertal ewe. IMPLICATIONS: A unfavourable oviductal environment may play an important role in limiting reproductive success.


Subject(s)
Fallopian Tubes , Progesterone , Animals , Female , Pregnancy , Estradiol/metabolism , Estrogens/metabolism , Estrus , Fallopian Tubes/metabolism , Progesterone/metabolism , Sheep
4.
Microbiol Resour Announc ; 12(9): e0039223, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37466335

ABSTRACT

From an animal health perspective, our understanding of the metabolites in rumen fluid across different host species is poorly understood. Here, we present a metabolomic data set generated using hydrophilic interaction liquid chromatography and semi-polar (C18) chromatography methods coupled to high-resolution mass spectrometry of fractionated ovine rumen samples.

5.
Biomedicines ; 11(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36830947

ABSTRACT

The emergence of drug-resistant parasitic nematodes in both humans and livestock calls for development of alternative and cost-effective control strategies. Barbervax® is the only registered vaccine for the economically important ruminant strongylid Haemonchus contortus. In this study, we compared the microbiome, genome-wide diversity, and transcriptome of H. contortus adult male populations that survived vaccination with an experimental vaccine after inoculation in sheep. Our genome-wide SNP analysis revealed 16 putative candidate vaccine evasion genes. However, we did not identify any evidence for changes in microbial community profiling based on the 16S rRNA gene sequencing results of the vaccine-surviving parasite populations. A total of fifty-eight genes were identified as significantly differentially expressed, with six genes being long non-coding (lnc) RNAs and none being putative candidate SNP-associated genes. The genes that highly upregulated in surviving parasites from vaccinated animals were associated with GO terms belonging to predominantly molecular functions and a few biological processes that may have facilitated evasion or potentially lessened the effect of the vaccine. These included five targets: astacin (ASTL), carbonate dehydratase (CA2), phospholipase A2 (PLA2), glutamine synthetase (GLUL), and fatty acid-binding protein (FABP3). Our tertiary structure predictions and modelling analyses were used to perform in silico searches of all published and commercially available inhibitor molecules or substrate analogs with potential broad-spectrum efficacy against nematodes of human and veterinary importance.

6.
Front Plant Sci ; 13: 1025698, 2022.
Article in English | MEDLINE | ID: mdl-36340377

ABSTRACT

Asexual Epichloë are endophytic fungi that form mutualistic symbioses with cool-season grasses, conferring to their hosts protection against biotic and abiotic stresses. Symbioses are maintained between grass generations as hyphae are vertically transmitted from parent to progeny plants through seed. However, endophyte transmission to the seed is an imperfect process where not all seeds become infected. The mechanisms underpinning the varying efficiencies of seed transmission are poorly understood. Host gene expression in response to Epichloë sp. LpTG-3 strain AR37 was examined within inflorescence primordia and ovaries of high and low endophyte transmission genotypes within a single population of perennial ryegrass. A genome-wide association study was conducted to identify population-level single nucleotide polymorphisms (SNPs) and associated genes correlated with vertical transmission efficiency. For low transmitters of AR37, upregulation of perennial ryegrass receptor-like kinases and resistance genes, typically associated with phytopathogen detection, comprised the largest group of differentially expressed genes (DEGs) in both inflorescence primordia and ovaries. DEGs involved in signaling and plant defense responses, such as cell wall modification, secondary metabolism, and reactive oxygen activities were also abundant. Transmission-associated SNPs were associated with genes for which gene ontology analysis identified "response to fungus" as the most significantly enriched term. Moreover, endophyte biomass as measured by quantitative PCR of Epichloë non-ribosomal peptide synthetase genes, was significantly lower in reproductive tissues of low-transmission hosts compared to high-transmission hosts. Endophyte seed-transmission efficiency appears to be influenced primarily by plant defense responses which reduce endophyte colonization of host reproductive tissues.

7.
Cells ; 11(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-36010603

ABSTRACT

In nematodes that invade the gastro-intestinal tract of the ruminant, the process of larval exsheathment marks the transition from the free-living to the parasitic stages of these parasites. To investigate the secretome associated with larval exsheathment, a closed in vitro system that effectively reproduces the two basic components of an anaerobic rumen environment (CO2 and 39 °C) was developed to trigger exsheathment in one of the most pathogenic and model gastrointestinal parasitic nematodes, Haemonchus contortus (barber's pole worm). This study reports the use of multimodal untargeted metabolomics and lipidomics methodologies to identify the metabolic signatures and compounds secreted during in vitro larval exsheathment in the H. contortus infective third-stage larva (iL3). A combination of statistical and chemoinformatic analyses using three analytical platforms revealed a panel of metabolites detected post exsheathment and associated with amino acids, purines, as well as select organic compounds. The major lipid classes identified by the non-targeted lipidomics method applied were lysophosphatidylglycerols, diglycerides, fatty acyls, glycerophospholipids, and a triglyceride. The identified metabolites may serve as metabolic signatures to improve tractability of parasitic nematodes for characterizing small molecule host-parasite interactions related to pathogenesis, vaccine and drug design, as well as the discovery of metabolic biomarkers.


Subject(s)
Haemonchus , Nematoda , Animals , Larva , Ruminants , Secretome
8.
J Anim Sci ; 100(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35723246

ABSTRACT

This study evaluated the influence of feeding low and high preweaning allowances of unpasteurized whole milk (MA) on intake, selected blood metabolites, antibody response, mammary gland growth, and growth of New Zealand (NZ) dairy heifers to 7 mo of age. At 10 ± 2 d of age (study day 0), group-housed (six·pen-1) heifer calves (Holstein-Friesian × Jersey) were allocated to low (4 L whole milk·calf-1·d-1; n = 7 pens) or high (8 L whole milk·calf-1·d-1; n = 7 pens) MA for the next 63 d. Calves were gradually weaned between days 63 ± 2 and 73 ± 2. Calves in each pen had ad-libitum access to clean water, pelleted calf starter, and chopped grass hay from day 1 to 91 ± 2 d. At 92 ± 2 d, all calves were transferred to pasture, grazed in a mob, and their growth and selected blood metabolites were measured until day 209. All animals were weighed weekly during the indoor period (to day 91) and then at days 105, 112, 128, 162, 184, and 209. Skeletal growth measurements and blood samples to analyze selected metabolites were collected at the start of the experiment, weaning, and then postweaning on day 91, and day 201. Specific antibodies against Leptospira and Clostridia were quantified in weeks 7, 13, and 27. Mammary glands were scanned using ultrasonography at the start of the experiment, weaning, and day 201. Feeding high vs. low amounts of MA increased the preweaning growth in heifer calves (P = 0.02) without negatively affecting postweaning average daily gain (ADG) (P = 0.74). Compared with heifers fed with low MA, high MA fed heifers had a greater increase in antibodies against Leptospira and Clostridia by 13 wk of age (P = 0.0007 and P = 0.06, respectively). By 27 wk of age, the antibody response was the same in heifers offered low or high MA. There was no effect of MA on the total size of the mammary gland, measured by ultrasonography, at weaning and 7 mo of age. However, the greater MA was associated with more mammary parenchyma (P = 0.01) and less mammary fat pad (P = 0.03) in back glands at 7 mo of age compared with heifers fed lower MA. In conclusion, feeding a high vs. a low amount of unpasteurized whole milk increased the preweaning growth of New Zealand replacement heifers without negatively affecting their ADG during postweaning under grazing conditions. Feeding more (8 vs. 4 L·d-1) unpasteurized whole milk positively affected antibody responses early in life and mammary gland composition by 7 mo of age in dairy heifers reared for pasture-based dairy systems.


This study evaluated the effect of unpasteurized whole milk allowance on intake, antibody response, mammary gland growth, and growth performance of heifers until 7 mo of age. Feeding greater (8 L·d−1) vs. lower (4 L·d−1) milk allowance to heifer calves increased preweaning body weight without having any negative effect on postweaning growth under grazing. Heifers fed high milk allowance had significantly better antibody responses against Leptospira and Clostridia by 3 mo of age and had more mammary parenchyma (potential milk making tissue), and less mammary fat pad (supporting tissue) by 7 mo of age.


Subject(s)
Animal Feed , Milk , Cattle , Animals , Female , Milk/metabolism , Animal Feed/analysis , Antibody Formation , Diet/veterinary , New Zealand , Weaning , Body Weight
9.
Microbiol Resour Announc ; 11(1): e0103521, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34989621

ABSTRACT

Clostridium bowmanii type strain DSM 14206 (ATCC BAA-581) was isolated from a microbial mat sample retrieved from Lake Fryxell, Antarctica. This report describes the generation and annotation of the 4.9-Mb draft genome sequence of C. bowmanii DSM 14206T.

10.
Front Immunol ; 13: 1087015, 2022.
Article in English | MEDLINE | ID: mdl-36741398

ABSTRACT

Mycobacterium avium subspecies paratuberculosis (MAP) causes chronic progressive granulomatous enteritis leading to diarrhea, weight-loss, and eventual death in ruminants. Commercially available vaccine provides only partial protection against MAP infection and can interfere with the use of current diagnostic tests for bovine tuberculosis in cattle. Here, we characterized immune responses in calves to vaccines containing four truncated MAP antigens as a fusion (Ag85A202-347-SOD1-72-Ag85B173-330-74F1-148+669-786), either displayed on protein particles, or expressed as a soluble recombinant MAP (rMAP) fusion protein as well as to commercially available Silirum® vaccine. The rMAP fusion protein elicited the strongest antigen-specific antibody responses to both PPDA and recombinant antigen and strong and long-lasting T-cell immune responses to these antigens, as indicated by increased production of IFN-γ and IL-17A in antigen-stimulated whole blood cultures. The MAP fusion protein particle vaccine induced minimal antibody responses and weak IFN-γ responses but stimulated IL-17A responses to recombinant antigen. The immune response profile of Silirum® vaccine was characterized by weak antibodies and strong IFN-γ and IL-17A responses to PPDA. Transcription analysis on antigen-stimulated leukocytes from cattle vaccinated with rMAP fusion protein showed differential expression of several immune response genes and genes involved in costimulatory signaling, TLR4, TLR2, PTX3, PTGS2, PD-L1, IL1B, IL2, IL6, IL12B, IL17A, IL22, IFNG, CD40, and CD86. Moreover, the expression of several genes of immune pathways correlated with cellular immune responses in the rMAP fusion protein vaccinated group. These genes have key roles in pathways of mycobacterial immunity, including autophagy, manipulation of macrophage-mediated killing, Th17- and regulatory T cells- (Treg) mediated responses. Calves vaccinated with either the rMAP fusion protein or MAP fusion protein particle vaccine did not induce reactivity to PPDA and PPDB in a comparative cervical skin test, whereas Silirum® induced reactivity to these tuberculins in most of the vaccinated animals. Overall, our results suggest that a combination of recombinant MAP antigens in the form of a soluble fusion protein vaccine are capable of inducing strong antigen-specific humoral and a balanced Th1/Th17-cell immune response. These findings, together with the absence of reactivity to tuberculin, suggest this subunit vaccine could provide protective immunity against intracellular MAP infection in cattle without compromising the use of current bovine tuberculosis surveillance test.


Subject(s)
Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Tuberculosis, Bovine , Cattle , Animals , Tuberculin , Interleukin-17 , Tuberculosis, Bovine/diagnosis , Immunity, Cellular , Tuberculin Test , Recombinant Proteins
11.
Front Fungal Biol ; 3: 944234, 2022.
Article in English | MEDLINE | ID: mdl-37746172

ABSTRACT

Epichloë festucae var. lolii and Epichloë sp. LpTG-3 are filamentous fungal endophytes of perennial ryegrass (Lolium perenne) that have a substantial impact on New Zealand's agricultural economy by conferring biotic advantages to the host grass. Overall, Epichloë endophytes contribute NZ$200 million to the economy annually, with strain AR37 estimated to contribute NZ$3.6 billion to the New Zealand economy over a 20-year period. This strain produces secondary metabolites, including epoxyjanthitrems, which are a class of indole diterpenes, associated with the observed effects of AR37 on livestock and insect pests. Until very recently, AR37 was intractable to genetic modification but this has changed with the application of CRISPR-Cas9 based gene editing techniques. In this paper, gene inactivation by CRISPR-Cas9 was used to deconvolute the genetic basis for epoxyjanthitrem biosynthesis, including creating an AR37 strain that has been edited to remove the biosynthesis of all indole diterpenes. We show that gene editing of Epichloë can be achieved without off-target events or introduction of foreign DNA (footprint-less) through an AMA1-based plasmid that simultaneously expresses the CRISPR-Cas9 system and selectable marker. Genetic modification events in these transformants were investigated through genome sequencing and in planta chemistry.

12.
J Anim Sci ; 99(8)2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34240172

ABSTRACT

Modulation of the immune system is known to be important for successful pregnancy but how immune function might differ between the lymph nodes draining the reproductive tract and peripheral lymph nodes is not well understood. Additionally, if immune system changes in response to the presence of an embryo during early pregnancy, and if this response differs in local versus peripheral immune tissue, has not been well characterized. To address these questions, we examined expression of genes important for immune function using NanoString technology in the ampulla and isthmus of the oviduct, endometrium, lymph nodes draining the reproductive tract (lumbo-aortic and medial iliac) as well as a peripheral lymph node (axillary), the spleen, and circulating immune cells from ewes on day 5 of the estrous cycle or pregnancy. Concentrations of estradiol and progesterone in plasma were also determined. Principal component analysis revealed separation of the local from the peripheral lymph nodes (MANOVA P = 3.245e-08, R2 = 0.3) as well as separation of tissues from pregnant and nonpregnant animals [lymph nodes (MANOVA P = 2.337e-09, R2 = 0.5), reproductive tissues (MANOVA P = 2.417e-14, R2 = 0.47)]. Nine genes were differentially (FDR < 0.10) expressed between lymph node types, with clear difference in expression of these genes between the lumbo-aortic and axillary lymph nodes. Expression of these genes in the medial iliac lymph node was not consistently different to either the axillary or the lumbo-aortic lymph node. Expression of IL10RB was increased (FDR < 0.05) by 24% in the reproductive tissue of the pregnant animals compared to nonpregnant animals. Analysis of gene categories revealed that expression of genes of the T-cell receptor pathway in reproductive tract tissues was associated (P < 0.05) with pregnancy status. In conclusion, assessment of gene expression of reproductive and immune tissue provides evidence for a specialization of the local immune system around the reproductive tract potentially important for successful establishment of pregnancy. Additionally, differences in gene expression patterns in reproductive tissue from pregnant and nonpregnant animals could be discerned as early as day 5 of pregnancy. This was found to be associated with expression of genes important for T-cell function and thus highlights the important role of these cells in early pregnancy.


Subject(s)
Pregnancy, Animal , Progesterone , Animals , Endometrium , Estrous Cycle , Female , Gene Expression , Immune System , Lymph Nodes , Pregnancy , Sheep
13.
Meat Sci ; 181: 108606, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34146920

ABSTRACT

The aim of this study was to explore the use of TD-NMR relaxometry and 1H NMR spectroscopy-based for detecting differences in meat quality attributes. There was limited association between various TD-NMR signals and any physicochemical parameters of fresh and aged meat differing in tenderness ratings. Samples were then divided into three groups based on statistical changes in metabolite concentration. Group A samples possessed near linear increases in metabolite concentration over aging time; whereas samples assigned to Groups B and C were characterized by increases in metabolites that peaked between 7 and 14 days, and up to 14 days aging, respectively. 1H NMR spectroscopy discriminated meat quality using changes in metabolites reflective of glycolysis, the citric acid cycle, protein degradation, amino acid generation and purine metabolisms. These data suggest segregation of meat quality is possible using both NMR technologies but additional work is necessary to understand fully their utility in a commercial industry setting.


Subject(s)
Food Handling , Red Meat/analysis , Animals , Cattle , Food Quality , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Male
14.
Microbiol Resour Announc ; 10(18)2021 May 06.
Article in English | MEDLINE | ID: mdl-33958401

ABSTRACT

Here, we present a 16S rRNA gene amplicon sequence data set and profiles demonstrating the bacterial diversity of larval and adult Calliphora vicina, collected from Ashhurst, New Zealand (May 2020). The three dominant genera among the adult male and female C. vicina blowflies were Serratia and Morganella (phylum Proteobacteria) and Carnobacterium (phylum Firmicutes), while the larvae were also dominated by the genera Lactobacillus (phylum Firmicutes).

15.
Microbiol Resour Announc ; 10(19)2021 May 13.
Article in English | MEDLINE | ID: mdl-33986085

ABSTRACT

Here, we present a 16S rRNA gene amplicon sequence data set and profiles demonstrating the bacterial diversity of larval and adult Lucilia sericata, collected from Ashhurst, New Zealand (May 2020). The two dominant genera among adult male and female L. sericata were Serratia and Morganella (phylum Proteobacteria), while the larvae were also dominated by the genera Lactobacillus, Carnobacterium, and Lactococcus (phylum Firmicutes).

16.
Food Microbiol ; 95: 103687, 2021 May.
Article in English | MEDLINE | ID: mdl-33397617

ABSTRACT

Bacterial species belonging to the genus Clostridium have been recognized as causative agents of blown pack spoilage (BPS) in vacuum packed meat products. Whole-genome sequencing of six New Zealand psychrotolerant clostridia isolates derived from three meat production animal types and their environments was performed to examine their roles in BPS. Comparative genome analyses have provided insight into the genomic diversity and physiology of these bacteria and divides clostridia into two separate species clusters. BPS-associated clostridia encode a large and diverse spectrum of degradative carbohydrate-active enzymes (CAZymes) that enable them to utilize the intramuscular carbohydrate stores and facilitate sporulation. In total, 516 glycoside hydrolases (GHs), 93 carbohydrate esterases (CEs), 21 polysaccharide lyases (PLs), 434 glycosyl transferases (GTs) and 211 carbohydrate-binding protein modules (CBM) with predicted activities involved in the breakdown and transport of carbohydrates were identified. Clostridia genomes have different patterns of CAZyme families and vary greatly in the number of genes within each CAZy category, suggesting some level of functional redundancy. These results suggest that BPS-associated clostridia occupy similar environmental niches but apply different carbohydrate metabolism strategies to be able to co-exist and cause meat spoilage.


Subject(s)
Clostridium/genetics , Clostridium/isolation & purification , Meat Products/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cattle , Clostridium/classification , Esterases/genetics , Esterases/metabolism , Food Packaging , Food Safety , Genome, Bacterial , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Meat Products/analysis , New Zealand , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Vacuum
17.
Front Genet ; 11: 573395, 2020.
Article in English | MEDLINE | ID: mdl-33133162

ABSTRACT

Haemonchus contortus and Teladorsagia circumcincta are among the two most pathogenic internal parasitic nematodes infecting small ruminants, such as sheep and goats, and are a global animal health issue. Accurate identification and delineation of Haemonchidae species is essential for development of diagnostic and control strategies with high resolution for Trichostrongyloidea infection in ruminants. Here, we describe in detail and compare the complete mitochondrial (mt) genomes of the New Zealand H. contortus and T. circumcincta field strains to improve our understanding of species- and strain-level evolution in these closely related roundworms. In the present study, we performed extensive comparative bioinformatics analyses on the recently sequenced complete mt genomes of the New Zealand H. contortus NZ_Hco_NP and T. circumcincta NZ_Teci_NP field strains. Amino acid sequences inferred from individual genes of each of the two mt genomes were compared, concatenated and subjected to phylogenetic analysis using Bayesian inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP). The AT-rich mt genomes of H. contortus NZ_Hco_NP and T. circumcincta NZ_Teci_NP are 14,001 bp (A+T content of 77.4%) and 14,081 bp (A+T content of 77.3%) in size, respectively. All 36 of the typical nematode mt genes are transcribed in the forward direction in both species and comprise of 12 protein-encoding genes (PCGs), 2 ribosomal RNA (rrn) genes, and 22 transfer RNA (trn) genes. The secondary structures for the 22 trn genes and two rrn genes differ between H. contortus NZ_Hco_NP and T. circumcincta NZ_Teci_NP, however the gene arrangements of both are consistent with other Trichostrongylidea sequenced to date. Comparative analyses of the complete mitochondrial nucleotide sequences, PCGs, A+T rich and non-coding repeat regions of H. contortus NZ_Hco_NP and T. circumcincta NZ_Teci_NP further reinforces the high levels of diversity and gene flow observed among Trichostrongylidea, and supports their potential as ideal markers for strain-level identification from different hosts and geographical regions with high resolution for future studies. The complete mt genomes of H. contortus NZ_Hco_NP and T. circumcincta NZ_Teci_NP presented here provide useful novel markers for further studies of the meta-population connectivity and the genetic mechanisms driving evolution in nematode species.

18.
Genome Biol Evol ; 12(9): 1566-1572, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32770231

ABSTRACT

Bacterial species belonging to the genus Pseudobutyrivibrio are important members of the rumen microbiome contributing to the degradation of complex plant polysaccharides. Pseudobutyrivibrio xylanivorans MA3014 was selected for genome sequencing to examine its ability to breakdown and utilize plant polysaccharides. The complete genome sequence of MA3014 is 3.58 Mb, consists of three replicons (a chromosome, chromid, and plasmid), has an overall G + C content of 39.6%, and encodes 3,265 putative protein-coding genes (CDS). Comparative pan-genomic analysis of all cultivated and currently available P. xylanivorans genomes has revealed a strong correlation of orthologous genes within this rumen bacterial species. MA3014 is metabolically versatile and capable of growing on a range of simple mono- or oligosaccharides derived from complex plant polysaccharides such as pectins, mannans, starch, and hemicelluloses, with lactate, butyrate, and formate as the principal fermentation end products. The genes encoding these metabolic pathways have been identified and MA3014 is predicted to encode an extensive range of Carbohydrate-Active enZYmes with 78 glycoside hydrolases, 13 carbohydrate esterases, and 54 glycosyl transferases, suggesting an important role in solubilization of plant matter in the rumen.


Subject(s)
Clostridiales/genetics , Genome, Bacterial , Glycolysis/genetics , Clostridiales/metabolism , Polysaccharides, Bacterial/metabolism , Whole Genome Sequencing
19.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32354982

ABSTRACT

Clostridium sp. strain FP1 was isolated from vacuum-packaged refrigerated spoiled lamb, and this article describes its 5.4-Mb draft genome sequence. The FP1 genome was sequenced to facilitate source tracking and attribution studies, adding to our understanding of the role of Clostridium species in premature spoilage of red meats.

20.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32354983

ABSTRACT

Clostridium sp. strain FP2 was isolated from vacuum-packaged refrigerated spoiled venison in New Zealand. This report describes the generation and annotation of the 5.6-Mb draft genome sequence of Clostridium sp. FP2, which will facilitate future functional genomic studies to improve our understanding of premature spoilage of red meats.

SELECTION OF CITATIONS
SEARCH DETAIL
...