Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
J Cereb Blood Flow Metab ; 40(5): 978-990, 2020 05.
Article in English | MEDLINE | ID: mdl-31234703

ABSTRACT

Acute hyperglycaemia and chronic hypertension worsen stroke outcome but their impact on collateral perfusion, a determinant of penumbral life span, is poorly understood. Laser-speckle contrast imaging (LSCI) was used to determine the influence of these stroke comorbidities on cortical perfusion after permanent middle cerebral artery occlusion (pMCAO) in spontaneously hypertensive stroke prone rats (SHRSP) and normotensive Wistar rats. Four independent studies were conducted. In animals without pMCAO, cortical perfusion remained stable over 180 min. Following pMCAO, cortical perfusion was markedly reduced at 30 min then gradually increased, via cortical collaterals, over the subsequent 3.5 h. In the contralateral non-ischaemic hemisphere, perfusion did not change over time. Acute hyperglycaemia (in normotensive Wistar) and chronic hypertension (SHRSP) attenuated the restoration of cortical perfusion after pMCAO. Inhaled nitric oxide did not influence cortical perfusion in SHRSP following pMCAO. Thus, hyperglycaemia at the time of arterial occlusion or pre-existing hypertension impaired the dynamic recruitment of cortical collaterals after pMCAO. The impairment of collateral recruitment may contribute to the detrimental effects these comorbidities have on stroke outcome.


Subject(s)
Cerebrovascular Circulation/physiology , Collateral Circulation/physiology , Hyperglycemia/physiopathology , Hypertension/physiopathology , Infarction, Middle Cerebral Artery/physiopathology , Animals , Brain/blood supply , Comorbidity , Male , Rats , Rats, Inbred SHR , Rats, Wistar
2.
Transl Stroke Res ; 10(5): 495-508, 2019 10.
Article in English | MEDLINE | ID: mdl-30617992

ABSTRACT

Active transport of microRNAs (miRNA) in extracellular vesicles (EV) occurs in disease. Circulating EV-packaged miRNAs in the serum of stroke patients were compared to stroke mimics with matched cardio- and cerebrovascular risk factors, with corroboration of results in a pre-clinical model. An unbiased miRNA microarray was performed in stroke vs. stroke mimic patients (n = 39). Results were validated (n = 173 patients) by real-time quantitative polymerase chain reaction. miRNA expression was quantified in total serum/EV (n = 5-7) of naïve adult spontaneously hypertensive stroke-prone rats (SHRSP), their normotensive reference strain (Wistar Kyoto, WKY) and in circulating EV (n = 3), peri-infarct brain (n = 6), or EV derived from this region (n = 3) in SHRSP following transient middle cerebral artery occlusion (tMCAO). Circulating EV concentration did not differ between stroke and stroke mimic patients. The microarray identified many altered EV-packaged miRNAs: levels of miRNA-17-5p, -20b-5p and -93-5p (miRNA-17 family members) and miRNA-27b-3p were significantly (p ≤ 0.05) increased in stroke vs. stroke mimic patients. Patients with small vessel disease (SVD) consistently had the highest miRNA levels. Circulating EV concentration was unaltered between naïve SHRSP and WKY but levels of miRNA-17-5p and -93-5p were significantly increased in SHRSP. tMCAO in SHRSP did not further alter circulating EV miRNA-17 family member expression and nor did it change total miRNA-17 family levels in peri-infarct brain tissue or in EV isolated from this region at 24 h post-tMCAO. Changes in EV packaged miRNA expression was validated in patients with stroke, particularly those with SVD and corroborated pre-clinically. Together, altered circulating EV levels of miRNA-17 family members may reflect the chronic sequelae underlying cerebrovascular SVD rather than the acute ischemic stroke itself.


Subject(s)
Brain Ischemia/blood , Cerebral Small Vessel Diseases/blood , Extracellular Vesicles/metabolism , MicroRNAs/blood , Stroke/blood , Animals , Disease Models, Animal , Male , Rats, Inbred SHR , Rats, Inbred WKY , Stroke/complications
3.
Transl Stroke Res ; 10(5): 583-595, 2019 10.
Article in English | MEDLINE | ID: mdl-30506268

ABSTRACT

In acute stroke patients, penumbral tissue is non-functioning but potentially salvageable within a time window of variable duration and represents target tissue for rescue. Reperfusion by thrombolysis and/or thrombectomy can rescue penumbra and improve stroke outcomes, but these treatments are currently available to a minority of patients. In addition to the utility of Glasgow Oxygen Level Dependent (GOLD) as an MRI contrast capable of detecting penumbra, its constituent perfluorocarbon (PFC) oxygen carrier, combined with normobaric hyperoxia, also represents a potential acute stroke treatment through improved oxygen delivery to penumbra. Preclinical studies were designed to test the efficacy of an intravenous oxygen carrier, the perfluorocarbon emulsion Oxycyte® (O-PFC), combined with normobaric hyperoxia (50% O2) in both in vitro (neuronal cell culture) and in vivo rat models of ischaemic stroke. Outcome was assessed through the quantification of lipid peroxidation and oxidative stress levels, mortality, infarct volume, neurological scoring and sensorimotor tests of functional outcome in two in vivo models of stroke. Additionally, we investigated evidence for any positive or negative interactions with the thrombolytic recombinant tissue plasminogen activator (rt-PA) following embolus-induced stroke in rats. Treatment with intravenous O-PFC + normobaric hyperoxia (50% O2) provided evidence of reduced infarct size and improved functional recovery. It did not exacerbate oxidative stress and showed no adverse interactions with rt-PA. The positive results and lack of adverse effects support human trials of O-PFC + 50% O2 normobaric hyperoxia as a potential therapeutic approach. Combined with the diagnostic data presented in the preceding paper, O-PFC and normobaric hyperoxia is a potential theranostic for acute ischaemic stroke.


Subject(s)
Brain Ischemia/therapy , Fluorocarbons/administration & dosage , Oxygen Inhalation Therapy/methods , Oxygen/administration & dosage , Stroke/therapy , Theranostic Nanomedicine/methods , Animals , Brain Ischemia/complications , Cell Line, Tumor , Male , Neurons/drug effects , Rats, Sprague-Dawley , Rats, Wistar , Stroke/complications
4.
Brain Neurosci Adv ; 2: 2398212818810689, 2018.
Article in English | MEDLINE | ID: mdl-30519643

ABSTRACT

Since the inception of the British Neuroscience Association, there have been major advances in our knowledge of the mechanistic basis for stroke-induced brain damage. Identification of the ischaemic cascade led to the development of hundreds of new drugs, many showing efficacy in preclinical (animal-based) studies. None of these drugs has yet translated to a successful stroke treatment, current therapy being limited to thrombolysis/thrombectomy. However, this translational failure has led to significant improvements in the quality of animal-based stroke research, with the refinement of rodent models, introduction of new technologies (e.g. transgenics, in vivo brain imaging) and improvements in study design (e.g. STAIR, ARRIVE and IMPROVE guidelines). This has run in parallel with advances in clinical diagnostic imaging for detection of ischaemic versus haemorrhagic stroke, differentiating penumbra from ischaemic core, and improved clinical trial design. These preclinical and clinical advances represent the foundation for successful translation from the bench to the bedside in the near future.

5.
Clin Sci (Lond) ; 132(8): 851-868, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29712883

ABSTRACT

Cerebral small vessel disease (SVD) is a major contributor to stroke, cognitive impairment and dementia with limited therapeutic interventions. There is a critical need to provide mechanistic insight and improve translation between pre-clinical research and the clinic. A 2-day workshop was held which brought together experts from several disciplines in cerebrovascular disease, dementia and cardiovascular biology, to highlight current advances in these fields, explore synergies and scope for development. These proceedings provide a summary of key talks at the workshop with a particular focus on animal models of cerebral vascular disease and dementia, mechanisms and approaches to improve translation. The outcomes of discussion groups on related themes to identify the gaps in knowledge and requirements to advance knowledge are summarized.


Subject(s)
Cerebral Small Vessel Diseases/etiology , Translational Research, Biomedical , Animals , Humans
6.
Theranostics ; 8(6): 1706-1722, 2018.
Article in English | MEDLINE | ID: mdl-29556351

ABSTRACT

The ability to identify metabolically active and potentially salvageable ischaemic penumbra is crucial for improving treatment decisions in acute stroke patients. Our solution involves two complementary novel MRI techniques (Glasgow Oxygen Level Dependant (GOLD) Metabolic Imaging), which when combined with a perfluorocarbon (PFC) based oxygen carrier and hyperoxia can identify penumbra due to dynamic changes related to continued metabolism within this tissue compartment. Our aims were (i) to investigate whether PFC offers similar enhancement of the second technique (Lactate Change) as previously demonstrated for the T2*OC technique (ii) to demonstrate both GOLD metabolic imaging techniques working concurrently to identify penumbra, following administration of Oxycyte® (O-PFC) with hyperoxia. Methods: An established rat stroke model was utilised. Part-1: Following either saline or PFC, magnetic resonance spectroscopy was applied to investigate the effect of hyperoxia on lactate change in presumed penumbra. Part-2; rats received O-PFC prior to T2*OC (technique 1) and MR spectroscopic imaging, which was used to identify regions of tissue lactate change (technique 2) in response to hyperoxia. In order to validate the techniques, imaging was followed by [14C]2-deoxyglucose autoradiography to correlate tissue metabolic status to areas identified as penumbra. Results: Part-1: PFC+hyperoxia resulted in an enhanced reduction of lactate in the penumbra when compared to saline+hyperoxia. Part-2: Regions of brain tissue identified as potential penumbra by both GOLD metabolic imaging techniques utilising O-PFC, demonstrated maintained glucose metabolism as compared to adjacent core tissue. Conclusion: For the first time in vivo, enhancement of both GOLD metabolic imaging techniques has been demonstrated following intravenous O-PFC+hyperoxia to identify ischaemic penumbra. We have also presented preliminary evidence of the potential therapeutic benefit offered by O-PFC. These unique theranostic applications would enable treatment based on metabolic status of the brain tissue, independent of time from stroke onset, leading to increased uptake and safer use of currently available treatment options.


Subject(s)
Brain Ischemia/diagnostic imaging , Brain/diagnostic imaging , Fluorocarbons/administration & dosage , Hyperoxia/diagnostic imaging , Magnetic Resonance Imaging/methods , Stroke/diagnostic imaging , Animals , Autoradiography/methods , Brain/blood supply , Brain/metabolism , Brain/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain Mapping/methods , Carbon Radioisotopes , Contrast Media/administration & dosage , Deoxyglucose/metabolism , Disease Models, Animal , Glucose/metabolism , Humans , Hyperoxia/metabolism , Hyperoxia/pathology , Infarction, Middle Cerebral Artery/surgery , Lactic Acid/metabolism , Male , Oxygen/metabolism , Rats , Rats, Sprague-Dawley , Stroke/metabolism , Stroke/pathology
7.
Brain Neurosci Adv ; 2: 2398212818794820, 2018.
Article in English | MEDLINE | ID: mdl-32166145

ABSTRACT

BACKGROUND: Hyperglycaemia is associated with a worse outcome in acute ischaemic stroke patients; yet the pathophysiological mechanisms of hyperglycaemia-induced damage are poorly understood. We hypothesised that hyperglycaemia at the time of stroke onset exacerbates ischaemic brain damage by increasing the severity of the blood flow deficit. METHODS: Adult, male Wistar rats were randomly assigned to receive vehicle or glucose solutions prior to permanent middle cerebral artery occlusion. Cerebral blood flow was assessed semi-quantitatively either 1 h after middle cerebral artery occlusion using 99mTc-D, L-hexamethylpropyleneamine oxime (99mTc-HMPAO) autoradiography or, in a separate study, using quantitative pseudo-continuous arterial spin labelling for 4 h after middle cerebral artery occlusion. Diffusion weighted imaging was performed alongside pseudo-continuous arterial spin labelling and acute lesion volumes calculated from apparent diffusion coefficient maps. Infarct volume was measured at 24 h using rapid acquisition with refocused echoes T2-weighted magnetic resonance imaging. RESULTS: Glucose administration had no effect on the severity of ischaemia when assessed by either 99mTc-HMPAO autoradiography or pseudo-continuous arterial spin labelling perfusion imaging. In comparison to the vehicle group, apparent diffusion coefficient-derived lesion volume 2-4 h post-middle cerebral artery occlusion and infarct volume 24 h post-middle cerebral artery occlusion were significantly greater in the glucose group. CONCLUSIONS: Hyperglycaemia increased acute lesion and infarct volumes but there was no evidence that the acute blood flow deficit was exacerbated. The data reinforce the conclusion that the detrimental effects of hyperglycaemia are rapid, and that treatment of post-stroke hyperglycaemia in the acute period is essential but the mechanisms of hyperglycaemia-induced harm remain unclear.

8.
Neuropharmacology ; 134(Pt B): 169-177, 2018 05 15.
Article in English | MEDLINE | ID: mdl-28923277

ABSTRACT

Over the past forty years, animal models of focal cerebral ischaemia have allowed us to identify the critical cerebral blood flow thresholds responsible for irreversible cell death, electrical failure, inhibition of protein synthesis, energy depletion and thereby the lifespan of the potentially salvageable penumbra. They have allowed us to understand the intricate biochemical and molecular mechanisms within the 'ischaemic cascade' that initiate cell death in the first minutes, hours and days following stroke. Models of permanent, transient middle cerebral artery occlusion and embolic stroke have been developed each with advantages and limitations when trying to model the complex heterogeneous nature of stroke in humans. Yet despite these advances in understanding the pathophysiological mechanisms of stroke-induced cell death with numerous targets identified and drugs tested, a lack of translation to the clinic has hampered pre-clinical stroke research. With recent positive clinical trials of endovascular thrombectomy in acute ischaemic stroke the stroke community has been reinvigorated, opening up the potential for future translation of adjunctive treatments that can be given alongside thrombectomy/thrombolysis. This review discusses the major animal models of focal cerebral ischaemia highlighting their advantages and limitations. Acute imaging is crucial in longitudinal pre-clinical stroke studies in order to identify the influence of acute therapies on tissue salvage over time. Therefore, the methods of identifying potentially salvageable ischaemic penumbra are discussed. This article is part of the Special Issue entitled 'Cerebral Ischemia'.


Subject(s)
Brain Ischemia/complications , Disease Models, Animal , Stroke/etiology , Stroke/therapy , Animals , Cerebrovascular Circulation/physiology , Humans , Stroke/diagnostic imaging
9.
J Cereb Blood Flow Metab ; 37(11): 3488-3517, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28797196

ABSTRACT

Most in vivo models of ischaemic stroke target the middle cerebral artery and a spectrum of stroke severities, from mild to substantial, can be achieved. This review describes opportunities to improve the in vivo modelling of ischaemic stroke and animal welfare. It provides a number of recommendations to minimise the level of severity in the most common rodent models of middle cerebral artery occlusion, while sustaining or improving the scientific outcomes. The recommendations cover basic requirements pre-surgery, selecting the most appropriate anaesthetic and analgesic regimen, as well as intraoperative and post-operative care. The aim is to provide support for researchers and animal care staff to refine their procedures and practices, and implement small incremental changes to improve the welfare of the animals used and to answer the scientific question under investigation. All recommendations are recapitulated in a summary poster (see supplementary information).


Subject(s)
Animal Welfare/standards , Brain Ischemia/pathology , Stroke/pathology , Animals , Disease Models, Animal , Guidelines as Topic , Humans , Infarction, Middle Cerebral Artery/pathology
10.
J Cereb Blood Flow Metab ; 37(1): 366-376, 2017 01.
Article in English | MEDLINE | ID: mdl-26787107

ABSTRACT

Oxygen challenge imaging involves transient hyperoxia applied during deoxyhaemoglobin sensitive (T2*-weighted) magnetic resonance imaging and has the potential to detect changes in brain oxygen extraction. In order to develop optimal practical protocols for oxygen challenge imaging, we investigated the influence of oxygen concentration, cerebral blood flow change, pattern of oxygen administration and field strength on T2*-weighted signal. Eight healthy volunteers underwent multi-parametric magnetic resonance imaging including oxygen challenge imaging and arterial spin labelling using two oxygen concentrations (target FiO2 of 100 and 60%) administered consecutively (two-stage challenge) at both 1.5T and 3T. There was a greater signal increase in grey matter compared to white matter during oxygen challenge (p < 0.002 at 3T, P < 0.0001 at 1.5T) and at FiO2 = 100% compared to FiO2 = 60% in grey matter at both field strengths (p < 0.02) and in white matter at 3T only (p = 0.0314). Differences in the magnitude of signal change between 1.5T and 3T did not reach statistical significance. Reduction of T2*-weighted signal to below baseline, after hyperoxia withdrawal, confounded interpretation of two-stage oxygen challenge imaging. Reductions in cerebral blood flow did not obscure the T2*-weighted signal increases. In conclusion, the optimal protocol for further study should utilise target FiO2 = 100% during a single oxygen challenge. Imaging at both 1.5T and 3T is clinically feasible.


Subject(s)
Cerebrovascular Circulation , Hyperoxia/metabolism , Magnetic Resonance Imaging/methods , Oxygen , Adult , Cerebral Arteries/diagnostic imaging , Gray Matter/diagnostic imaging , Healthy Volunteers , Humans , Methods , Oxygen/metabolism , Spin Labels , White Matter/diagnostic imaging
11.
Brain Neurosci Adv ; 1: 2398212817717112, 2017.
Article in English | MEDLINE | ID: mdl-32166133

ABSTRACT

BACKGROUND: Cerebral ischaemia results in a rapid and profound depletion of adenosine triphosphate (ATP), the energy currency of the cell. This depletion leads to disruption of cellular homeostasis and cell death. Early replenishment of ATP levels might therefore have a neuroprotective effect in the injured brain. We have previously shown that the ATP precursors, D-ribose and adenine (RibAde), restored the reduced ATP levels in rat brain slices to values similar to those measured in the intact rodent brain. The aim of this study was to assess whether RibAde, either alone or in combination with the xanthine oxidase inhibitor allopurinol (RibAdeAll; to further increase the availability of ATP precursors), could improve outcome in an in vivo rodent model of transient cerebral ischaemia. METHODS: After 60 min occlusion of the middle cerebral artery, and upon reperfusion, rats were administered saline, RibAde, or RibAdeAll for 6 h. Baseline lesion volume was determined by diffusion-weighted MRI prior to reperfusion and final infarct volume determined by T2-weighted MRI at Day 7. Neurological function was assessed at Days 1, 3 and 7. RESULTS: Ischaemic lesion volume decreased between Days 1 and 7: a 50% reduction was observed for the RibAdeAll group, 38% for the RibAde group and 18% in the animals that received saline. Reductions in lesion size in treatment groups were accompanied by a trend for faster functional recovery. CONCLUSION: These data support the potential use of ribose, adenine and allopurinol in the treatment of cerebral ischaemic injury, especially since all compounds have been used in man.

12.
J Cereb Blood Flow Metab ; 37(6): 2098-2111, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27492949

ABSTRACT

The C-type lectin Mincle is implicated in innate immune responses to sterile inflammation, but its contribution to associated pathologies is not well understood. Herein, we show that Mincle exacerbates neuronal loss following ischemic but not traumatic spinal cord injury. Loss of Mincle was beneficial in a model of transient middle cerebral artery occlusion but did not alter outcomes following heart or gut ischemia. High functional scores in Mincle KO animals using the focal cerebral ischemia model were accompanied by reduced lesion size, fewer infiltrating leukocytes and less neutrophil-derived cytokine production than isogenic controls. Bone marrow chimera experiments revealed that the presence of Mincle in the central nervous system, rather than recruited immune cells, was the critical regulator of a poor outcome following transient middle cerebral artery occlusion. There was no evidence for a direct role for Mincle in microglia or neural activation, but expression in a subset of macrophages resident in the perivascular niche provided new clues on Mincle's role in ischemic stroke.


Subject(s)
Hypoxia-Ischemia, Brain/metabolism , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Reperfusion Injury/metabolism , Spinal Cord Injuries/metabolism , Animals , Disease Models, Animal , Flow Cytometry , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/physiopathology , In Situ Nick-End Labeling , Intestines/blood supply , Lectins, C-Type/genetics , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/physiology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology
13.
Transl Stroke Res ; 7(5): 368-77, 2016 10.
Article in English | MEDLINE | ID: mdl-27543177

ABSTRACT

Standard imaging in acute stroke enables the exclusion of non-stroke structural CNS lesions and cerebral haemorrhage from clinical and pre-clinical ischaemic stroke trials. In this review, the potential benefit of imaging (e.g., angiography and penumbral imaging) as a translational tool for trial recruitment and the use of imaging endpoints are discussed for both clinical and pre-clinical stroke research. The addition of advanced imaging to identify a "responder" population leads to reduced sample size for any given effect size in phase 2 trials and is a potentially cost-efficient means of testing interventions. In pre-clinical studies, technical failures (failed or incomplete vessel occlusion, cerebral haemorrhage) can be excluded early and continuous multimodal imaging of the animal from stroke onset is feasible. Pre- and post-intervention repeat scans provide real time assessment of the intervention over the first 4-6 h. Negative aspects of advanced imaging in animal studies include increased time under general anaesthesia, and, as in clinical studies, a delay in starting the intervention. In clinical phase 3 trial designs, the negative aspects of advanced imaging in patient selection include higher exclusion rates, slower recruitment, overestimated effect size and longer acquisition times. Imaging may identify biological effects with smaller sample size and at earlier time points, compared to standard clinical assessments, and can be adjusted for baseline parameters. Mechanistic insights can be obtained. Pre-clinically, multimodal imaging can non-invasively generate data on a range of parameters, allowing the animal to be recovered for subsequent behavioural testing and/or the brain taken for further molecular or histological analysis.


Subject(s)
Brain/diagnostic imaging , Clinical Trials as Topic/methods , Drug Evaluation, Preclinical , Fibrinolytic Agents/therapeutic use , Neuroimaging , Stroke/diagnostic imaging , Stroke/drug therapy , Animals , Brain/drug effects , Brain Ischemia/etiology , Disease Models, Animal , Humans , Stroke/complications
14.
J Cereb Blood Flow Metab ; 36(2): 381-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26661149

ABSTRACT

This is the first study to assess the influence of sex on the evolution of ischaemic injury and penumbra. Permanent middle cerebral artery occlusion was induced in male (n = 9) and female (n = 10) Sprague-Dawley rats. Diffusion-weighted imaging was acquired over 4 h and infarct determined from T2 images at 24 h post-permanent middle cerebral artery occlusion. Penumbra was determined retrospectively from serial apparent diffusion coefficient lesions and T2-defined infarct. Apparent diffusion coefficient lesion volume was significantly smaller in females from 0.5 to 4 h post permanent middle cerebral artery occlusion as was infarct volume. Penumbral volume, and its loss over time, was not significantly different despite the sex difference in acute and final lesion volumes.


Subject(s)
Brain Ischemia/pathology , Stroke/pathology , Animals , Brain Ischemia/mortality , Diffusion Magnetic Resonance Imaging , Disease Progression , Female , Image Processing, Computer-Assisted , Infarction, Middle Cerebral Artery/pathology , Male , Rats , Rats, Sprague-Dawley , Sex Characteristics , Stroke/mortality
15.
J Cereb Blood Flow Metab ; 35(12): 2109, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26621060

ABSTRACT

Correction to: Journal of Cerebral Blood Flow & Metabolism (2015) 35, 592­600; doi:10.1038/jcbfm.2014.230; published online 17 December 2014. Following the publication of this article, the authors noticed the following error: The Results section of the article contains a typographical error under subheading 'Study III-Effect of Mild Hypothermia, Hematoxylin and Eosin Edema'. . The edema volumes of '3.1±0.65 mm3 versus 27.9±6.5 mm3' should read '0.7±1.2 mm3 versus 6.5 ± 9.2 mm3.'

16.
J Cereb Blood Flow Metab ; 35(1): 103-10, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25335803

ABSTRACT

Tissue sodium concentration increases in irreversibly damaged (core) tissue following ischemic stroke and can potentially help to differentiate the core from the adjacent hypoperfused but viable penumbra. To test this, multinuclear hydrogen-1/sodium-23 magnetic resonance imaging (MRI) was used to measure the changing sodium signal and hydrogen-apparent diffusion coefficient (ADC) in the ischemic core and penumbra after rat middle cerebral artery occlusion (MCAO). Penumbra and core were defined from perfusion imaging and histologically defined irreversibly damaged tissue. The sodium signal in the core increased linearly with time, whereas the ADC rapidly decreased by >30% within 20 minutes of stroke onset, with very little change thereafter (0.5-6 hours after MCAO). Previous reports suggest that the time point at which tissue sodium signal starts to rise above normal (onset of elevated tissue sodium, OETS) represents stroke onset time (SOT). However, extrapolating core data back in time resulted in a delay of 72 ± 24 minutes in OETS compared with actual SOT. At the OETS in the core, penumbra sodium signal was significantly decreased (88 ± 6%, P=0.0008), whereas penumbra ADC was not significantly different (92 ± 18%, P=0.2) from contralateral tissue. In conclusion, reduced sodium-MRI signal may serve as a viability marker for penumbra detection and can complement hydrogen ADC and perfusion MRI in the time-independent assessment of tissue fate in acute stroke patients.


Subject(s)
Brain Ischemia/pathology , Brain/pathology , Diffusion Magnetic Resonance Imaging , Sodium/metabolism , Stroke/pathology , Animals , Brain/metabolism , Brain/physiopathology , Brain Ischemia/metabolism , Brain Ischemia/physiopathology , Cerebrovascular Circulation/physiology , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Male , Rats, Sprague-Dawley , Sodium Isotopes , Stroke/metabolism , Stroke/physiopathology
17.
Int J Stroke ; 10(2): 153-62, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24215361

ABSTRACT

Magnetic resonance imaging has tremendous potential to illuminate ischemic stroke pathophysiology and guide rational treatment decisions. Clinical applications to date have been largely limited to trials. However, recent analyses of the major clinical studies have led to refinements in selection criteria and improved understanding of the potential implications for the risk vs. benefit of thrombolytic therapy. In parallel, preclinical studies have provided complementary information on the evolution of stroke that is difficult to obtain in humans due to the requirement for continuous or repeated imaging and pathological verification. We review the clinical and preclinical advances that have led to perfusion-diffusion mismatch being applied in phase 3 randomized trials and, potentially, future routine clinical practice.


Subject(s)
Brain Ischemia/pathology , Magnetic Resonance Imaging/methods , Stroke/pathology , Animals , Brain Ischemia/therapy , Humans , Stroke/therapy
18.
Int J Stroke ; 10(1): 42-50, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25042078

ABSTRACT

BACKGROUND: Acute ischemic stroke is common and disabling, but there remains a paucity of acute treatment options and available treatment (thrombolysis) is underutilized. Advanced brain imaging, designed to identify viable hypoperfused tissue (penumbra), could target treatment to a wider population. Existing magnetic resonance imaging and computed tomography-based technologies are not widely used pending validation in ongoing clinical trials. T2* oxygen challenge magnetic resonance imaging, by providing a more direct readout of tissue viability, has the potential to identify more patients likely to benefit from thrombolysis - irrespective of time from stroke onset - and patients within and beyond the 4·5 h thrombolysis treatment window who are unlikely to benefit and are at an increased risk of hemorrhage. AIMS: This study employs serial multimodal imaging and voxel-based analysis to develop optimal data processing for T2* oxygen challenge penumbra assessment. Tissue in the ischemic hemisphere is compartmentalized into penumbra, ischemic core, or normal using T2* oxygen challenge (single threshold) or T2* oxygen challenge plus cerebral blood flow (dual threshold) data. Penumbra defined by perfusion imaging/apparent diffusion coefficient mismatch (dual threshold) is included for comparison. METHODS: Permanent middle cerebral artery occlusion was induced in male Sprague-Dawley rats (n = 6) prior to serial multimodal imaging: T2* oxygen challenge, diffusion-weighted and perfusion imaging (cerebral blood flow using arterial spin labeling). RESULTS: Across the different methods evaluated, T2* oxygen challenge combined with perfusion imaging most closely predicted 24 h infarct volume. Penumbra volume declined from one to four-hours post-stroke: mean ± SD, 77 ± 44 to 49 ± 37 mm(3) (single T2* oxygen challenge-based threshold); 55 ± 41 to 37 ± 12 mm(3) (dual T2* oxygen challenge/cerebral blood flow); 84 ± 64 to 42 ± 18 mm(3) (dual cerebral blood flow/apparent diffusion coefficient), as ischemic core grew: 155 ± 37 to 211 ± 36 mm(3) (single apparent diffusion coefficient threshold); 178 ± 56 to 205 ± 33 mm(3) (dual T2* oxygen challenge/cerebral blood flow); 139 ± 30 to 168 ± 38 mm(3) (dual cerebral blood flow/apparent diffusion coefficient). There was evidence of further lesion growth beyond four-hours (T2-defined edema-corrected infarct, 231 ± 19 mm(3) ). CONCLUSIONS: In conclusion, T2* oxygen challenge combined with perfusion imaging has advantages over alternative magnetic resonance imaging techniques for penumbra detection by providing serial assessment of available penumbra based on tissue viability.


Subject(s)
Brain Ischemia/pathology , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Animals , Male , Rats , Rats, Sprague-Dawley
19.
J Cereb Blood Flow Metab ; 35(4): 592-600, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25515213

ABSTRACT

In both the human and animal literature, it has largely been assumed that edema is the primary cause of intracranial pressure (ICP) elevation after stroke and that more edema equates to higher ICP. We recently demonstrated a dramatic ICP elevation 24 hours after small ischemic strokes in rats, with minimal edema. This ICP elevation was completely prevented by short-duration moderate hypothermia soon after stroke. Here, our aims were to determine the importance of edema in ICP elevation after stroke and whether mild hypothermia could prevent the ICP rise. Experimental stroke was performed in rats. ICP was monitored and short-duration mild (35 °C) or moderate (32.5 °C) hypothermia, or normothermia (37 °C) was induced after stroke onset. Edema was measured in three studies, using wet-dry weight calculations, T2-weighted magnetic resonance imaging, or histology. ICP increased 24 hours after stroke onset in all normothermic animals. Short-duration mild or moderate hypothermia prevented this rise. No correlation was seen between ΔICP and edema or infarct volumes. Calculated rates of edema growth were orders of magnitude less than normal cerebrospinal fluid production rates. These data challenge current concepts and suggest that factors other than cerebral edema are the primary cause of the ICP elevation 24 hours after stroke onset.


Subject(s)
Brain Edema/physiopathology , Brain Ischemia/physiopathology , Brain/physiopathology , Hypothermia, Induced , Intracranial Hypertension/physiopathology , Intracranial Hypertension/therapy , Animals , Brain Edema/complications , Brain Ischemia/complications , Hypothermia, Induced/methods , Intracranial Hypertension/etiology , Male , Rats , Rats, Wistar , Stroke/complications , Stroke/physiopathology
20.
J Cereb Blood Flow Metab ; 33(9): 1422-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23801243

ABSTRACT

Accurate imaging of ischemic penumbra is crucial for improving the management of acute stroke patients. T2* magnetic resonance imaging (MRI) combined with a T2*oxygen challenge (T2*OC) is being developed to detect penumbra based on changes in blood deoxyhemoglobin. Using 100% O2, T2*OC-defined penumbra exhibits ongoing glucose metabolism and tissue recovery on reperfusion. However, potential limitations in translating this technique include a sinus artefact in human scans with delivery of 100% OC and relatively small signal changes. Here we investigate whether an oxygen-carrying perfluorocarbon (PFC) emulsion can enhance the sensitivity of the technique, enabling penumbra detection with lower levels of inspired oxygen. Stroke was induced in male Sprague-Dawley rats (n=17) with ischemic injury and perfusion deficit determined by diffusion and perfusion MRI, respectively. T2* signal change was measured in regions of interest (ROIs) located within ischemic core, T2*OC-defined penumbra and equivalent contralateral areas during 40% O2±prior PFC injection. Region of interest analyses between groups showed that PFC significantly enhanced the T2* response to 40% O2 in T2*-defined penumbra (mean increase of 10.6±2.3% compared to 5.6±1.5% with 40% O2, P<0.001). This enhancement was specific to the penumbra ROI. Perfluorocarbon emulsions therefore enhances the translational potential of the T2*OC technique for identifying penumbra in acute stroke patients.


Subject(s)
Blood Substitutes/pharmacology , Brain Ischemia , Contrast Media/pharmacology , Fluorocarbons/pharmacology , Magnetic Resonance Imaging/methods , Stroke , Animals , Brain Ischemia/diagnostic imaging , Brain Ischemia/metabolism , Disease Models, Animal , Hemoglobins/metabolism , Humans , Male , Oxygen/metabolism , Radiography , Rats , Rats, Sprague-Dawley , Stroke/diagnostic imaging , Stroke/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...