Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Acta Odontol Latinoam ; 36(2): 96-105, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37776506

ABSTRACT

Previous studies by us demonstrated that the consumption of thermally oxidized oil diet adversely affects body growth, lipid metabolism, bone mass and femur biomechanical competence. AIM: The aim of this study was to evaluate the effects of a diet containing fried sunflower oil on the mandible of growing rats. MATERIALS AND METHOD: Male Wistar rats (21±1 day old) (n=21) were assigned at weaning to one of three diets for 8 weeks: a control diet (C), a diet containing sunflower oil (SFO) or a diet containing sunflower oil that had been repeatedly heated (SFOx); both SFO and SFOx were mixed with commercial rat chow at 13% (w/w). The consistency and viscosity of the 3 diets were similar. Zoometrics and food intake were recorded weekly. At wk=8, mandibular growth was assessed by measurements of anatomical points of cleaned bones, and mandible biomechanical competence was assessed to estimate the structural properties of the bone. Statistical analysis was performed by SPSS v. 20.0. RESULTS: Rats fed SFOx diet attained the lowest final body weight (P=0.0074), mandibular weight (P=0.0001) and mandibular \length (P=0.0002). Load bearing capacity (Wf;N), load of yielding (Wy;N) and stiffness (Wy/dy;N/mm) of the mandible were negatively affected by both sunflower oil diets (fresh and fried) (P=0.001; P=0.002; P=0.003, respectively) though SFOx induced the most significant reduction in Wy/dy (C:44.4(5.4) > SFO:36.1(2.1) > SFOx: 26.3(3.7) N/ mm; P=0.003). The deleterious effect of SFOx on mandibular growth was more accentuated on the posterior part of the bone (C:11.4(0.3)=SFO:11.2(0.2)>SFOx: 10.7(0.2) mm; p=0.0005); the anterior/ posterior ratio (C:1.25(0.02)=SFO:1.27(0.02)

En estudios previos hemos demostrado los efectos adversos del consumo de una dieta rica en aceite termooxidado sobre el crecimiento corporal, el metabolismo de los lípidos, la masa ósea y la competencia biomecánica del fémur. OBJETIVO: El objetivo de este trabajo fue investigar el efecto de una dieta rica en aceite de girasol termooxidado (AGX) sobre los parámetros morfométricos y biomecánicos de la mandíbula de rata en crecimiento. Materiales y Método: Ratas macho Wistar de 22±1 días de edad (n=21) recibieron durante 8 semanas una de 3 dietas: control (C); dieta comercial, una dieta suplementada con aceite de girasol (AG) y una dieta suplementada con AGX. La consistencia y la viscosidad de las dietas fueron similares. Los parámetros zoométricos y el consumo de dieta se registraron semanalmente. A T=8, los animales se eutanasiaron y se obtuvieron las hemimandíbulas. El crecimiento mandibular se estimó por medidas morfométricas entre puntos anatómicos y las propiedades estructurales por biomecánica. El análisis estadístico se realizó por SPSS v. 20.0. RESULTADOS: Las ratas alimentadas con AGX presentaron menor peso corporal final (p=0.0074), peso mandibular (p=0.0001) y longitud mandibular (p=0.0002). Las propiedades estructurales de la mandíbula, Wf (p=0.001), Wy (p=0.002) y Wy/dy (p=0.003), se vieron afectadas negativamente en ratas alimentadas con AG o AGX, respecto a C; pero la rigidez ósea (Wy/dy) en AGX fue significativamente menor (C:44.4(5.4) > SFO:36.1(2.1) > SFOx: 26.3(3.7) N/mm; p=0.003). El efecto deletéreo del AGX sobre el crecimiento mandibular fue más acentuado en la región posterior (C:11.4(0.3)=SFO:11.2(0.2)>SFOx: 10.7(0.2) mm; p=0.0005). La relación anterior/posterior (C=1.25 (0.02); AG= 1.27(0.02) y AGX=1.32(0.03), p=0.001) indica que AGX indujo deformación mandibular. CONCLUSIONES: El efecto adverso del consumo de una dieta rica en AGX durante el crecimiento podría afectar los parámetros morfométricos y la biomecánica ósea en términos de rigidez ósea.


Subject(s)
Diet , Mandible , Rats , Animals , Male , Sunflower Oil , Rats, Wistar
2.
Acta odontol. latinoam ; 36(2): 96-105, Aug. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1513552

ABSTRACT

ABSTRACT Previous studies by us demonstrated that the consumption of thermally oxidized oil diet adversely affects body growth, lipid metabolism, bone mass and femur biomechanical competence. Aim: The aim of this study was to evaluate the effects of a diet containing fried sunflower oil on the mandible of growing rats. Materials and Method: Male Wistar rats (21±1 day old) (n=21) were assigned at weaning to one of three diets for 8 weeks: a control diet (C), a diet containing sunflower oil (SFO) or a diet containing sunflower oil that had been repeatedly heated (SFOx); both SFO and SFOx were mixed with commercial rat chow at 13% (w/w). The consistency and viscosity of the 3 diets were similar. Zoometrics and food intake were recorded weekly. At wk=8, mandibular growth was assessed by measurements of anatomical points of cleaned bones, and mandible biomechanical competence was assessed to estimate the structural properties of the bone. Statistical analysis was performed by SPSS v. 20.0. Results: Rats fed SFOx diet attained the lowest final body weight (P=0.0074), mandibular weight (P=0.0001) and mandibular /length (P=0.0002). Load bearing capacity (Wf;N), load of yielding (Wy;N) and stiffness (Wy/dy;N/mm) of the mandible were negatively affected by both sunflower oil diets (fresh and fried) (P=0.001; P=0.002; P=0.003, respectively) though SFOx induced the most significant reduction in Wy/dy (C:44.4(5.4) > SFO:36.1(2.1) > SFOx: 26.3(3.7) N/ mm; P=0.003). The deleterious effect of SFOx on mandibular growth was more accentuated on the posterior part of the bone (C:11.4(0.3)=SFO:11.2(0.2)>SFOx: 10.7(0.2) mm; p=0.0005); the anterior/ posterior ratio (C:1.25(0.02)=SFO:1.27(0.02)<SFOx:1.32(0.03); p=0.0001) indicated that SFOx induced mandibular deformation. Conclusion: Consumption of SFOx diet during growth could affect mandibular morphometric properties and biomechanical competence, in terms of bone stiffness.


RESUMEN En estudios previos hemos demostrado los efectos adversos del consumo de una dieta rica en aceite termooxidado sobre el crecimiento corporal, el metabolismo de los lípidos, la masa ósea y la competencia biomecánica del fémur. Objetivo: El objetivo de este trabajo fue investigar el efecto de una dieta rica en aceite de girasol termooxidado (AGX) sobre los parámetros morfométricos y biomecánicos de la mandíbula de rata en crecimiento. Materiales y Método: Ratas macho Wistar de 22±1 días de edad (n=21) recibieron durante 8 semanas una de 3 dietas: control (C); dieta comercial, una dieta suplementada con aceite de girasol (AG) y una dieta suplementada con AGX. La consistencia y la viscosidad de las dietas fueron similares. Los parámetros zoométricos y el consumo de dieta se registraron semanalmente. A T=8, los animales se eutanasiaron y se obtuvieron las hemimandíbulas. El crecimiento mandibular se estimó por medidas morfométricas entre puntos anatómicos y las propiedades estructurales por biomecánica. El análisis estadístico se realizó por SPSS v. 20.0. Resultados: Las ratas alimentadas con AGX presentaron menor peso corporal final (p=0.0074), peso mandibular (p=0.0001) y longitud mandibular (p=0.0002). Las propiedades estructurales de la mandíbula, Wf (p=0.001), Wy (p=0.002) y Wy/dy (p=0.003), se vieron afectadas negativamente en ratas alimentadas con AG o AGX, respecto a C; pero la rigidez ósea (Wy/dy) en AGX fue significativamente menor (C:44.4(5.4) > SFO:36.1(2.1) > SFOx: 26.3(3.7) N/mm; p=0.003). El efecto deletéreo del AGX sobre el crecimiento mandibular fue más acentuado en la región posterior (C:11.4(0.3)=SFO:11.2(0.2)>SFOx: 10.7(0.2) mm; p=0.0005). La relación anterior/posterior (C=1.25 (0.02); AG= 1.27(0.02) y AGX=1.32(0.03), p=0.001) indica que AGX indujo deformación mandibular. Conclusiones: El efecto adverso del consumo de una dieta rica en AGX durante el crecimiento podría afectar los parámetros morfométricos y la biomecánica ósea en términos de rigidez ósea.

3.
Int J Food Sci Nutr ; 67(4): 441-53, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26983467

ABSTRACT

Phytosterols (P) and fish-oil (F) efficacy on high-oleic-sunflower oil (HOSO) diets were assessed in hypercholesterolemic growing rats. Controls (C) received a standard diet for 8 weeks; experimental rats were fed an atherogenic diet (AT) for 3 weeks, thereafter were divided into four groups fed for 5 weeks a monounsaturated fatty acid diet (MUFA) containing either: extra virgin olive oil (OO), HOSO or HOSO supplemented with P or F. The diets did not alter body weight or growth. HOSO-P and HOSO-F rats showed reduced total cholesterol (T-chol), non-high-density lipoprotein-cholesterol (non-HDL-chol) and triglycerides and increased HDL-chol levels, comparably to the OO rats. Total body fat (%) was similar among all rats; but HOSO-F showed the lowest intestinal, epididymal and perirenal fat. However, bone mineral content and density, and bone yield stress and modulus of elasticity were unchanged. Growing hypercholesterolemic rats fed HOSO with P or F improved serum lipids and fat distribution, but did not influence material bone quality.


Subject(s)
Anticholesteremic Agents/therapeutic use , Dietary Fats, Unsaturated/therapeutic use , Dietary Supplements , Fish Oils/therapeutic use , Hypercholesterolemia/diet therapy , Phytosterols/therapeutic use , Plant Oils/therapeutic use , Animals , Anticholesteremic Agents/adverse effects , Butter/adverse effects , Cholesterol/blood , Cholesterol, HDL/blood , Diet, Atherogenic/adverse effects , Diet, High-Fat/adverse effects , Dietary Fats, Unsaturated/adverse effects , Dietary Supplements/adverse effects , Fish Oils/adverse effects , Hypercholesterolemia/blood , Hypercholesterolemia/etiology , Male , Oleic Acid/adverse effects , Oleic Acid/therapeutic use , Olive Oil/adverse effects , Olive Oil/therapeutic use , Phytosterols/adverse effects , Plant Oils/adverse effects , Random Allocation , Rats, Wistar , Sunflower Oil , Triglycerides/blood , Weaning
4.
Int J Food Sci Nutr ; 66(4): 400-8, 2015.
Article in English | MEDLINE | ID: mdl-25830945

ABSTRACT

The effects of replacing dietary saturated fat by different monounsaturated fatty acid (ω-9MUFA) sources on serum lipids, body fat and bone in growing hypercholesterolemic rats were studied. Rats received one of the six different diets: AIN-93G (control, C); extra virgin olive oil (OO) + C; high-oleic sunflower oil (HOSO) + C or atherogenic diet (AT) for 8 weeks; the remaining two groups received AT for 3 weeks and then, the saturated fat was replaced by an oil mixture of soybean oil added with OO or HOSO for 5 weeks. Rats consuming MUFA-rich diets showed the highest body fat, hepatic index and epididymal, intestinal and perirenal fat, and triglycerides. T-chol and non-HDL-chol were increased in HOSO rats but decreased in OO rats. Bone mineral content and density were higher in both OO and HOSO groups than in AT rats. This study casts caution to the generalization of the benefits of MUFA for the treatment of hypercholesterolemia.


Subject(s)
Diet/methods , Fatty Acids, Monounsaturated/pharmacology , Hypercholesterolemia/blood , Hypercholesterolemia/physiopathology , Adipose Tissue/physiology , Animals , Bone Density/physiology , Diet/statistics & numerical data , Diet, Atherogenic , Disease Models, Animal , Fatty Acids, Monounsaturated/blood , Lipids/blood , Liver/physiopathology , Male , Olive Oil/administration & dosage , Plant Oils/administration & dosage , Rats , Rats, Wistar , Soybean Oil/administration & dosage , Sunflower Oil , Triglycerides/blood
5.
Pharmacol Rep ; 66(5): 867-73, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25149993

ABSTRACT

BACKGROUND: The aim of this study was to assess mRNA of IL-6, TNFα and IL-10 cytokines in bone marrow, possible mediators involved in altered bone remodeling with detrimental consequences on bone quality in NGR (Nutritional growth retardation) rats. METHODS: Weanling male Wistar rats were assigned either to control (C) or experimental group (NGR) (n=20 each). C and NGR groups were assigned to 2 groups according to receiving saline solution (SS) or propranolol hydrochloride (P): C, C+P (CP), NGR or NGR+P (NGRP). For 4 weeks, NGR and NGRP rats received 80% of the amount of food consumed by C and CP, respectively, the previous day, corrected by body weight. P (7 mg/kg/day) was injected ip 5 days/week, for 4 weeks in CP and NGRP rats. Body weight and length were recorded. After 4 weeks, blood was drawn. Femurs were dissected for RNA isolation from bone marrow and mRNA of cytokines assays. RESULTS: Food restriction induced a significant negative effect on body growth in NGR and NGRP rats (p<0.001). P had no effects on zoometric parameters (p>0.05). CTX-I increased in NGR rats vs. C (p<0.001), but diminished in NGRP (p<0.01). Serum osteocalcin, PTH, calcium and phosphate levels remained unchanged between groups (p>0.05). In NGR, bone marrow IL-6 mRNA and IL-10 mRNA levels were low as compared to other groups (p<0.05). In contrast, bone marrow TNF-α mRNA levels were significantly high (p<0.05). CONCLUSIONS: This study provides evidences that NGR outcomes in a bone marrow proinflammatory microenvironment leading to unbalanced bone remodeling by enhancement of bone resorption reverted by propranolol.


Subject(s)
Bone Remodeling/drug effects , Food Deprivation/physiology , Growth Disorders/drug therapy , Propranolol/pharmacology , Animals , Biomarkers/metabolism , Bone Marrow/drug effects , Bone Marrow/metabolism , Disease Models, Animal , Femur , Growth Disorders/physiopathology , Interleukin-10/genetics , Interleukin-6/genetics , Male , RNA, Messenger/metabolism , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/genetics
6.
Nutr Res ; 32(1): 52-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22260864

ABSTRACT

Previous studies performed in an experimental model of nutritional growth retardation (NGR) have observed metabolic adaptation. We hypothesized that changes in lipid-lipoprotein profile, glucose, and insulin levels occur, whereas overall body growth is reduced.The aim of this study was to assess serum lipid-lipoprotein profile, hepatogram, insulinemia and glycemia, and CVD risk markers in rats fed a suboptimal diet. Weanling male rats were assigned either to control (C) or NGR group. In this 4-week study, C rats were fed ad libitum a standard diet, and NGR rats received 80% of the amount of food consumed by C. Zoometric parameters, body fat content, serum lipid-lipoprotein profile, hepatogram, insulinemia, and glycemia were determined, and the cardiovascular disease (CVD) risk markers homeostasis model assessment-insulin resistance and homeostasis model assessment and ß-cell function were calculated. Suboptimal food intake induced a significant decrease in body weight and length, which were accompanied by a reduction of 50% in body fat mass. Serum lipoproteins were significantly higher in NGR rats, with the exception of high-density lipoprotein cholesterol, which remained unchanged. Nutritional growth retardation rats had decreased triglycerides compared with C rats. No significant differences were detected in liver function parameters. The CVD risk markers homeostasis model assessment (HOMA)-insulin resistance and homeostasis model assessment and ß-cell function were significantly lower in NGR rats. Mild chronic suboptimal nutrition in weanling male rats led to growth retardation and changes in the lipid-lipoprotein profile, glucose, and insulin levels while preserving the integrity of liver function. These data suggest a metabolic adaptation during suboptimal food intake, which ensures substrates flux to tissues that require constant energy-in detriment to body growth. The CVD risk markers suggested that mild chronic food restriction of approximately 20% could provide protection against this degenerative disease.


Subject(s)
Cardiovascular Diseases/physiopathology , Diet , Dyslipidemias/physiopathology , Animals , Blood Glucose/analysis , Body Weight , Cardiovascular Diseases/complications , Cholesterol, HDL/blood , Disease Models, Animal , Dyslipidemias/complications , Insulin/blood , Insulin Resistance , Male , Nutritional Status , Random Allocation , Rats , Rats, Wistar , Risk Factors , Triglycerides/blood
7.
Eur J Nutr ; 51(4): 399-406, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21725629

ABSTRACT

BACKGROUND: High-fat diets are usually associated with greater weight (W) gain and body fat (BF). However, it is still unclear whether the type and amount of fat consumed influence BF. Additionally, dietary fat intake may also have consequences on skeletal health. OBJECTIVE: To evaluate in healthy growing rats the effects of high-fat diets and type of dietary fat intake (saturated or vegetable oils) on energy and bone metabolism. METHODS: At weaning, male Wistar rats (n = 50) were fed either a control diet (C; fat = 7% w/w) or a high-fat diet (20% w/w) containing either: soybean oil, corn oil (CO), linseed oil (LO), or beef tallow (BT) for 8 weeks. Zoometric parameters, BF, food intake and digestibility, and total and bone alkaline phosphatase (b-AP) were assessed. Total skeleton bone mineral density (BMD) and content (BMC), BMC/W, spine BMD, and bone volume (static-histomorphometry) were measured. RESULTS: Animals fed BT diet achieved lower W versus C. Rats fed high-fat vegetable oil diets showed similar effects on the zoometric parameters but differed in BF. BT showed the lowest lipid digestibility and BMC. In contrast, high vegetable oil diets produced no significant differences in BMC, BMC/W, BMD, spine BMD, and bone volume. Marked differences were observed for LO and BT groups in b-AP and CO and BT groups in bone volume. CONCLUSION: BT diet rich in saturated fatty acids had decreased digestibility and adversely affected energy and bone metabolisms, in growing healthy male rats. There were no changes in zoometric and bone parameters among rats fed high vegetable oil diets.


Subject(s)
Bone Development , Bone and Bones/metabolism , Diet, High-Fat/adverse effects , Energy Metabolism , Fats/adverse effects , Plant Oils/adverse effects , Alkaline Phosphatase/blood , Animals , Bone and Bones/chemistry , Bone and Bones/cytology , Cattle , Corn Oil/adverse effects , Corn Oil/metabolism , Digestion , Fats/metabolism , Isoenzymes/blood , Linseed Oil/adverse effects , Linseed Oil/metabolism , Male , Minerals/analysis , Plant Oils/metabolism , Random Allocation , Rats , Rats, Wistar , Soybean Oil/adverse effects , Soybean Oil/metabolism , Weaning
8.
Nutrition ; 21(2): 249-54, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15723755

ABSTRACT

OBJECTIVE: A low-fat diet is hypothesized to be associated with significant weight loss. However, most previous studies have been limited to low-fat, low-calorie restrictive diets. This study evaluated the effect of isocaloric diets given "ad libitum" but different in relative amounts of fat and carbohydrate on body size, energy metabolism, body composition, insulin-like growth factor-1, and leptin serum levels in growing Wistar rats. METHODS: Weanling male rats were fed with one of three diets that contained a ratio of carbohydrate to fat of 1:1, 2:1, or 3:1. Food intake, body weight, body length, oxygen consumption, and body composition were measured at ages 21 to 50 d. Serum levels of insulin-like growth factor-1 and leptin were also determined. RESULTS: Energy intake was similar across groups. The ratio of body weight to body length remained adequate throughout the experimental period. However, groups that received 3:1 and 2:1 showed increased weight and progressive decreases in energy expenditure, body fat composition, and serum level of leptin, but the ratio of insulin-like growth factor-1 to body length was not affected. CONCLUSIONS: Dietary substitution of fat with carbohydrates contributes to weight gain by decreasing energy expenditure and possibly by decreasing leptin secretion.


Subject(s)
Body Composition/drug effects , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Energy Metabolism/drug effects , Weight Gain/drug effects , Animals , Body Composition/physiology , Diet, Fat-Restricted , Dietary Carbohydrates/metabolism , Dietary Fats/metabolism , Energy Intake/drug effects , Energy Metabolism/physiology , Leptin/metabolism , Male , Oxygen Consumption/drug effects , Rats , Rats, Wistar , Weight Gain/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...