Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 351: 124094, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38703983

ABSTRACT

The chorion is the first protective barrier set to prevent numerous pollutants from damaging the developing embryo. However, depending on their size, some nanoplastics (NPs) can pass through this barrier and reach the embryo, while all microplastics (MPs) remain on the outside. This study brings a straight approach to compare MPs and NPs, and assess their direct and indirect effects on zebrafish embryos and larvae. Zebrafish eggs were exposed before 2 h post fertilization (hpf) to polystyrene MPs (5 µm) and NPs (250 nm) at a concentration of 1000 µg/L until 96 hpf. Physiotoxicity and neurotoxicity were assessed prior and post-hatching through several biomarkers. Response to hypoxia (upregulation of hif-1aa and hif-1ab) were found in embryos exposed to MPs, and partly found in those exposed to NPs. Embryos exposed to NPs showed significant tachycardia, reduced O2 consumption and increased apoptosis in the eyes, whereas MPs affected the expressions of all genes related to the neurodevelopment of embryos (elavl3, pax2a, pax6a, act1b). Post-hatching, physiological responses were muted. MPs and NPs exposures ended by evaluating larval behaviours during dark-and-light cycles. Both sizes of plastic particles negatively affected the visual motor response (VMR) and vibrational startle response (VSR). Thigmotaxis levels were significantly increased by NPs whereas MPs showed anxiolytic properties. This study shows that both MPs and NPs affect the physiology and neurodevelopment of zebrafish at different levels, before and after hatching.

2.
Natl Sci Rev ; 10(11): nwad235, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37859633

ABSTRACT

This perspective discusses the fundamental benefits and drawbacks of aqueous batteries and the challenges of the development of such battery technology from laboratory scale to industrial applications.

3.
J Colloid Interface Sci ; 634: 290-299, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36535165

ABSTRACT

Periodic structures with alternating refractive indices such as inverse opal photonic crystals are capable of reducing the group velocity of light such that this slowed light can be more efficiently harvested for highly enhanced solar energy conversion. However, the generation, the manipulation and, in particular, the practical applications of these slow photons remain highly challenging. Here, we report the first proof of concept on the ability to control, in an inverse opal TiO2-BiVO4 hetero-composite, the transfer of slow photons generated from the inverse opal photonic structure to the photocatalytically active BiVO4 nanoparticles for highly enhanced visible light photoconversion. Tuning the slow photon frequencies, in order to accommodate the electronic band gap of BiVO4 for slow photon transfer and for significantly improved light harvesting, was successfully achieved by varying the structural periodicity (pore size) of inverse opal and the light incidence angle. The photocatalytic activity of BiVO4 in all inverse opal structures, promoted by slow photon effect, reached up to 7 times higher than those in the non-structured compact films. This work opens new avenues for the practical utilization of slow photon effect under visible light in photocatalytic energy-related applications like water splitting and carbon dioxide reduction and in photovoltaics.

SELECTION OF CITATIONS
SEARCH DETAIL
...