Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Protoplasma ; 260(2): 391-403, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35727420

ABSTRACT

Generation of crops with broad-spectrum tolerance to biotic and abiotic stress conditions depends upon availability of genetic elements suitable for varied situations and diverse genotypes. Here, we characterize the 5'-upstream regulatory region of flavonoid 3'5'-hydroxylase-1 (F3'5'H-1) gene from banana and analyzed its tissue-specific and stress-mediated activation in genetic background of tobacco plants. MusaF3'5'H-1 is a stress-responsive gene as its expression is induced in banana after application of salicylic acid and methyl jasmonate while its transcript levels were drastically reduced in response to drought, high salinity and abscisic acid. PMusaF3'5'H-1 harbours cis-elements associated with stress conditions and those responsible for tissue-specific expression. Transgenic lines harbouring PMusaF3'5'H-1-GUS displays strong GUS expression in guard cells of stomata indicating guard cell preferred activity of PMusaF3'5'H-1 while its activity was undetectable in roots. Drought and high salinity induce strong expression of GUS in transgenic tobacco lines and exposure to abscisic acid, salicylic acid and methyl jasmonate revealed distinct profiles of GUS expression in transgenic lines confirming involvement of F3'5'H-1 in plant stress responses. Fluorescent ß-galactosidase assay revealed induction profiles of PMusaF3'5'H-1 at different time points in transgenic lines exposed to salicylic acid and abscisic acid while strong suppression in GUS expression was observed after application of methyl jasmonate. The guard cell preferred activity of PMusaF3'5'H-1 and stress-mediated expression profiles of MusaF3'5'H-1 indicated the suitability of PMusaF3'5'H-1 for generating stress-enduring crops and analyzing guard cell functions.


Subject(s)
Musa , Musa/genetics , Musa/metabolism , Abscisic Acid/pharmacology , Regulatory Sequences, Nucleic Acid , Salicylic Acid , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant , Droughts , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Plant Physiol Biochem ; 168: 62-69, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34619599

ABSTRACT

In the present study, the 5'-regulatory region of chalcone isomerase gene (MusaCHI-1) of banana was functionally analysed for its tissue specific, stress mediated and strong guard cell preferred activity. Expression of MusaCHI-1 was altered in leaves of banana plants exposed to various stress conditions and signalling molecules. Transgenic lines of tobacco harbouring PMusaCHI-1-GUS displays prominent GUS staining in vascular region and guard cells of leaves which corroborates with array of Dof1 binding cis-elements in PMusaCHI-1 region. Multiple cis-elements associated with various stress conditions were detected in PMusaCHI-1 which directly correlates with alteration of MusaCHI-1 transcript level in banana exposed to stress conditions. GUS staining of transgenic tobacco plants harbouring PMusaCHI-1-GUS and exposed to drought, salinity, and applications of methyl jasmonate and abscisic acid indicated activation of PMusaCHI-1 under these conditions while exposure of salicylic acid strongly suppresses GUS expression from PMusaCHI-1.


Subject(s)
Musa , Abscisic Acid , Droughts , Gene Expression Regulation, Plant , Musa/genetics , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...