Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Am J Physiol Cell Physiol ; 326(3): C999-C1009, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38344799

ABSTRACT

Dysregulation of skeletal muscle morphology and metabolism is associated with chronic diseases such as obesity and type 2 diabetes. The enzyme glycogen synthase kinase 3 (GSK3) is highly involved in skeletal muscle physiology and metabolism, acting as a negative regulator of muscle size, strength, adaptive thermogenesis, and glucose homeostasis. Correspondingly, we have shown that partial knockdown (∼40%) of GSK3 specifically in skeletal muscle increases lean mass, reduces fat mass, and activates muscle-based adaptive thermogenesis via sarco(endo)plasmic reticulum Ca2+ (SERCA) uncoupling in male mice. However, the effects of GSK3 knockdown in female mice have yet to be investigated. Here, we examined the effects of muscle-specific GSK3 knockdown on body composition, muscle size and strength, and whole body metabolism in female C57BL/6J mice. Our results show that GSK3 content is higher in the female soleus versus the male soleus; however, there were no differences in the extensor digitorum longus (EDL). Furthermore, muscle-specific GSK3 knockdown did not alter body composition in female mice, nor did it alter daily energy expenditure, glucose/insulin tolerance, mitochondrial respiration, or the expression of the SERCA uncouplers sarcolipin and neuronatin. We also did not find any differences in soleus muscle size, strength, or fatigue resistance. In the EDL, we found that an increase in absolute and specific force production, but there were no differences in fatigability. Therefore, our study highlights sex differences in the response to genetic reduction of gsk3, with most of the effects previously observed in male mice being absent in females.NEW & NOTEWORTHY Here we show that partial GSK3 knockdown has minimal effects on whole body metabolism and muscle contractility in female mice. This is partly inconsistent with previous results found in male mice, which reveal a potential influence of biological sex.


Subject(s)
Diabetes Mellitus, Type 2 , Glycogen Synthase Kinase 3 , Mice , Female , Male , Animals , Diabetes Mellitus, Type 2/metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Glucose/metabolism
2.
Cell Rep ; 42(7): 112751, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37405921

ABSTRACT

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a cancer syndrome caused by inactivating germline mutations in fumarate hydratase (FH) and subsequent accumulation of fumarate. Fumarate accumulation leads to profound epigenetic changes and the activation of an anti-oxidant response via nuclear translocation of the transcription factor NRF2. The extent to which chromatin remodeling shapes this anti-oxidant response is currently unknown. Here, we explored the effects of FH loss on the chromatin landscape to identify transcription factor networks involved in the remodeled chromatin landscape of FH-deficient cells. We identify FOXA2 as a key transcription factor that regulates anti-oxidant response genes and subsequent metabolic rewiring cooperating without direct interaction with the anti-oxidant regulator NRF2. The identification of FOXA2 as an anti-oxidant regulator provides additional insights into the molecular mechanisms behind cell responses to fumarate accumulation and potentially provides further avenues for therapeutic intervention for HLRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Leiomyomatosis , Neoplastic Syndromes, Hereditary , Skin Neoplasms , Uterine Neoplasms , Female , Humans , Fumarate Hydratase/genetics , Antioxidants , NF-E2-Related Factor 2/genetics , Leiomyomatosis/genetics , Uterine Neoplasms/genetics , Skin Neoplasms/genetics , Neoplastic Syndromes, Hereditary/genetics , Chromatin , Kidney Neoplasms/genetics , Carcinoma, Renal Cell/genetics , Hepatocyte Nuclear Factor 3-beta/genetics
3.
J Biol Chem ; 298(11): 102568, 2022 11.
Article in English | MEDLINE | ID: mdl-36209826

ABSTRACT

Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) uncoupling in skeletal muscle and mitochondrial uncoupling via uncoupling protein 1 (UCP1) in brown/beige adipose tissue are two mechanisms implicated in energy expenditure. Here, we investigated the effects of glycogen synthase kinase 3 (GSK3) inhibition via lithium chloride (LiCl) treatment on SERCA uncoupling in skeletal muscle and UCP1 expression in adipose. C2C12 and 3T3-L1 cells treated with LiCl had increased SERCA uncoupling and UCP1 protein levels, respectively, ultimately raising cellular respiration; however, this was only observed when LiCl treatment occurred throughout differentiation. In vivo, LiCl treatment (10 mg/kg/day) increased food intake in chow-fed diet and high-fat diet (HFD; 60% kcal)-fed male mice without increasing body mass-a result attributed to elevated daily energy expenditure. In soleus muscle, we determined that LiCl treatment promoted SERCA uncoupling via increased expression of SERCA uncouplers, sarcolipin and/or neuronatin, under chow-fed and HFD-fed conditions. We attribute these effects to the GSK3 inhibition observed with LiCl treatment as partial muscle-specific GSK3 knockdown produced similar effects. In adipose, LiCl treatment inhibited GSK3 in inguinal white adipose tissue (iWAT) but not in brown adipose tissue under chow-fed conditions, which led to an increase in UCP1 in iWAT and a beiging-like effect with a multilocular phenotype. We did not observe this beiging-like effect and increase in UCP1 in mice fed a HFD, as LiCl could not overcome the ensuing overactivation of GSK3. Nonetheless, our study establishes novel regulatory links between GSK3 and SERCA uncoupling in muscle and GSK3 and UCP1 and beiging in iWAT.


Subject(s)
Adenosine Triphosphatases , Lithium , Animals , Male , Mice , Adenosine Triphosphatases/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Diet, High-Fat , Dietary Supplements , Endoplasmic Reticulum Stress , Glycogen Synthase Kinase 3/metabolism , Lithium/metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
4.
BMC Biol ; 19(1): 265, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911556

ABSTRACT

BACKGROUND: Tissue hypoxia is a key feature of several endemic hepatic diseases, including alcoholic and non-alcoholic fatty liver disease, and organ failure. Hypoxia imposes a severe metabolic challenge on the liver, potentially disrupting its capacity to carry out essential functions including fuel storage and the integration of lipid metabolism at the whole-body level. Mitochondrial respiratory function is understood to be critical in mediating the hepatic hypoxic response, yet the time-dependent nature of this response and the role of the respiratory chain in this remain unclear. RESULTS: Here, we report that hepatic respiratory capacity is enhanced following short-term exposure to hypoxia (2 days, 10% O2) and is associated with increased abundance of the respiratory chain supercomplex III2+IV and increased cardiolipin levels. Suppression of this enhanced respiratory capacity, achieved via mild inhibition of mitochondrial complex III, disrupted metabolic homeostasis. Hypoxic exposure for 2 days led to accumulation of plasma and hepatic long chain acyl-carnitines. This was observed alongside depletion of hepatic triacylglycerol species with total chain lengths of 39-53 carbons, containing palmitic, palmitoleic, stearic, and oleic acids, which are associated with de novo lipogenesis. The changes to hepatic respiratory capacity and lipid metabolism following 2 days hypoxic exposure were transient, becoming resolved after 14 days in line with systemic acclimation to hypoxia and elevated circulating haemoglobin concentrations. CONCLUSIONS: The liver maintains metabolic homeostasis in response to shorter term hypoxic exposure through transient enhancement of respiratory chain capacity and alterations to lipid metabolism. These findings may have implications in understanding and treating hepatic pathologies associated with hypoxia.


Subject(s)
Lipid Metabolism , Liver , Homeostasis , Humans , Hypoxia/metabolism , Lipogenesis , Liver/metabolism
6.
Commun Biol ; 4(1): 615, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021238

ABSTRACT

Mitochondria are typically essential for the viability of eukaryotic cells, and utilize oxygen and nutrients (e.g. glucose) to perform key metabolic functions that maintain energetic homeostasis and support proliferation. Here we provide a comprehensive functional annotation of mitochondrial genes that are essential for the viability of a large panel (625) of tumour cell lines. We perform genome-wide CRISPR/Cas9 deletion screening in normoxia-glucose, hypoxia-glucose and normoxia-galactose conditions, and identify both unique and overlapping genes whose loss influences tumour cell viability under these different metabolic conditions. We discover that loss of certain oxidative phosphorylation (OXPHOS) genes (e.g. SDHC) improves tumour cell growth in hypoxia-glucose, but reduces growth in normoxia, indicating a metabolic switch in OXPHOS gene function. Moreover, compared to normoxia-glucose, loss of genes involved in energy-consuming processes that are energetically demanding, such as translation and actin polymerization, improve cell viability under both hypoxia-glucose and normoxia-galactose. Collectively, our study defines mitochondrial gene essentiality in tumour cells, highlighting that essentiality is dependent on the metabolic environment, and identifies routes for regulating tumour cell viability in hypoxia.


Subject(s)
CRISPR-Cas Systems , Cell Proliferation , Genes, Mitochondrial , Genome, Mitochondrial , Hypoxia/physiopathology , Mitochondria/genetics , Neoplasms/pathology , Glycolysis , Humans , Mitochondria/pathology , Neoplasms/genetics , Oxidative Phosphorylation , Tumor Cells, Cultured
7.
Cells ; 8(11)2019 10 29.
Article in English | MEDLINE | ID: mdl-31671858

ABSTRACT

Glycogen synthase kinase 3 (GSK3) slows myogenic differentiation and myoblast fusion partly by inhibiting the Wnt/ß-catenin signaling pathway. Lithium, a common medication for bipolar disorder, inhibits GSK3 via Mg+ competition and increased Ser21 (GSK3α) or Ser9 (GSK3ß) phosphorylation, leading to enhanced myoblast fusion and myogenic differentiation. However, previous studies demonstrating the effect of lithium on GSK3 have used concentrations up to 10 mM, which greatly exceeds concentrations measured in the serum of patients being treated for bipolar disorder (0.5-1.2 mM). Here, we determined whether a low-therapeutic (0.5 mM) dose of lithium could promote myoblast fusion and myogenic differentiation in C2C12 cells. C2C12 myotubes differentiated for three days in media containing 0.5 mM lithium chloride (LiCl) had significantly higher GSK3ß (ser9) and GSK3α (ser21) phosphorylation compared with control myotubes differentiated in the same media without LiCl (+2-2.5 fold, p < 0.05), a result associated with an increase in total ß-catenin. To further demonstrate that 0.5 mM LiCl inhibited GSK3 activity, we also developed a novel GSK3-specific activity assay. Using this enzyme-linked spectrophotometric assay, we showed that 0.5 mM LiCl-treated myotubes had significantly reduced GSK3 activity (-86%, p < 0.001). Correspondingly, 0.5 mM LiCl treated myotubes had a higher myoblast fusion index compared with control (p < 0.001) and significantly higher levels of markers of myogenesis (myogenin, +3-fold, p < 0.001) and myogenic differentiation (myosin heavy chain, +10-fold, p < 0.001). These results indicate that a low-therapeutic dose of LiCl is sufficient to promote myoblast fusion and myogenic differentiation in muscle cells, which has implications for the treatment of several myopathic conditions.


Subject(s)
Glycogen Synthase Kinase 3/antagonists & inhibitors , Lithium Chloride/pharmacology , Muscle Development/drug effects , Myoblasts/drug effects , Animals , Cell Differentiation/drug effects , Cell Fusion , Cells, Cultured , Dose-Response Relationship, Drug , Glycogen Synthase Kinase 3/metabolism , Humans , Lithium Chloride/administration & dosage , Mice , Myoblasts/cytology , Myoblasts/physiology , Wnt Signaling Pathway/drug effects
8.
Am J Physiol Cell Physiol ; 317(5): C1025-C1033, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31433693

ABSTRACT

Calcineurin is a Ca2+/calmodulin (CaM)-dependent phosphatase that plays a critical role in promoting the slow fiber phenotype and myoblast fusion in skeletal muscle, thereby making calcineurin an attractive cellular target for enhancing fatigue resistance, muscle metabolism, and muscle repair. Neurogranin (Ng) is a CaM-binding protein thought to be expressed solely in brain and neurons, where it inhibits calcineurin signaling by sequestering CaM, thus lowering its cellular availability. Here, we demonstrate for the first time the expression of Ng protein and mRNA in mammalian skeletal muscle. Both protein and mRNA levels are greater in slow-oxidative compared with fast-glycolytic muscles. Coimmunoprecipitation of CaM with Ng in homogenates of C2C12 myotubes, mouse soleus, and human vastus lateralis suggests that these proteins physically interact. To determine whether Ng inhibits calcineurin signaling in muscle, we used Ng siRNA with C2C12 myotubes to reduce Ng protein levels by 60%. As a result of reduced Ng expression, C2C12 myotubes had enhanced CaM-calcineurin binding and calcineurin signaling as indicated by reduced phosphorylation of nuclear factor of activated T cells and increased utrophin mRNA. In addition, calcineurin signaling affects the expression of myogenin and stabilin-2, which are involved in myogenic differentiation and myoblast fusion, respectively. Here, we found that both myogenin and stabilin-2 were significantly elevated by Ng siRNA in C2C12 cells, concomitantly with an increased fusion index. Taken together, these results demonstrate the expression of Ng in mammalian skeletal muscle where it appears to be a novel regulator of calcineurin signaling.


Subject(s)
Calcineurin/biosynthesis , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Neurogranin/biosynthesis , Signal Transduction/physiology , Animals , Calcineurin/genetics , Gene Expression , Humans , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/cytology , Neurogranin/genetics , Young Adult
9.
Oncol Lett ; 17(1): 697-705, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30655819

ABSTRACT

Resveratrol (RES) is a polyphenol produced by certain plant species that has been well studied due to its ability to slow the growth of cancer cells. In numerous cell types and tissues, RES has been demonstrated to promote mitochondrial biogenesis, fusion, and oxidative phosphorylation. The present study investigated the interaction between RES's effects on growth and metabolism in PC3 prostate cancer cells, and demonstrated that RES-mediated growth inhibition is only observed under conditions in which a metabolic shift from glucose fermentation to mitochondrial respiration can occur. When this shift was prevented by growing cells in galactose medium or by pharmacologically inhibiting prolyl hydroxylase (PHD) in order to stabilize hypoxia inducible factor-1α, RES did not effect mitochondrial fusion, biogenesis, respiration or cell growth. Similar results were observed in PC3 cells expressing a mutant HIF-1α lacking the prolines that are hydroxylated by PHD to promote its degradation. Thus, RES appears to slow PC3 cell growth by interfering with glucose fermentation and promoting respiration. Consistent with this, RES was observed to be particularly effective at inhibiting PC3 cell growth under hypoxic conditions that precluded increased reliance on oxidative phosphorylation. These observations are important in understanding how RES may affect cancer cell growth in vivo where hypoxia is common in growing tumours.

10.
Bioorg Med Chem Lett ; 29(1): 107-114, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30459096

ABSTRACT

The production and use of multi-modal imaging agents is on the rise. The vast majority of these imaging agents are limited to a single length scale for the agent (e.g. tissues only), which is typically at the organ or tissue scale. This work explores the synthesis of such an imaging agent and discusses the applications of our vitamin E-inspired multi-modal and multi-length scale imaging agents TB-Toc ((S,E)-5,5-difluoro-7-(2-(5-((6-hydroxy-2,5,7,8-tetramethylchroman-2-yl) methyl) thiophen-2-yl) vinyl)-9-methyl-5H-dipyrrolo-[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide). We investigate the toxicity of TB-Toc along with the starting materials and lipid based delivery vehicle in mouse myoblasts and fibroblasts. Further we investigate the uptake of TB-Toc delivered to cultured cells in both solvent and liposomes. TB-Toc has low toxicity, and no change in cell viability was observed up to concentrations of 10 mM. TB-Toc shows time-dependent cellular uptake that is complete in about 30 min. This work is the first step in demonstrating our vitamin E derivatives are viable multi-modal and length scale diagnostic tools.


Subject(s)
Neoplasms/diagnostic imaging , Tocopherols/toxicity , Vitamin E/chemistry , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Mice , Molecular Structure , Myoblasts/drug effects , Optical Imaging , Positron-Emission Tomography , Structure-Activity Relationship , Tocopherols/chemistry
11.
Front Oncol ; 8: 388, 2018.
Article in English | MEDLINE | ID: mdl-30338240

ABSTRACT

Dysregulated mitochondrial function is associated with the pathology of a wide range of diseases including renal disease and cancer. Thus, investigating regulators of mitochondrial function is of particular interest. Previous work has shown that the von Hippel-Lindau tumor suppressor protein (pVHL) regulates mitochondrial biogenesis and respiratory chain function. pVHL is best known as an E3-ubiquitin ligase for the α-subunit of the hypoxia inducible factor (HIF) family of dimeric transcription factors. In normoxia, pVHL recognizes and binds hydroxylated HIF-α (HIF-1α and HIF-2α), targeting it for ubiquitination and proteasomal degradation. In this way, HIF transcriptional activity is tightly controlled at the level of HIF-α protein stability. At least 80% of clear cell renal carcinomas exhibit inactivation of the VHL gene, which leads to HIF-α protein stabilization and constitutive HIF activation. Constitutive HIF activation in renal carcinoma drives tumor progression and metastasis. Reconstitution of wild-type VHL protein (pVHL) in pVHL-defective renal carcinoma cells not only suppresses HIF activation and tumor growth, but also enhances mitochondrial respiratory chain function via mechanisms that are not fully elucidated. Here, we show that pVHL regulates mitochondrial function when re-expressed in pVHL-defective 786O and RCC10 renal carcinoma cells distinct from its regulation of HIF-α. Expression of CHCHD4, a key component of the disulphide relay system (DRS) involved in mitochondrial protein import within the intermembrane space (IMS) was elevated by pVHL re-expression alongside enhanced expression of respiratory chain subunits of complex I (NDUFB10) and complex IV (mtCO-2 and COX IV). These changes correlated with increased oxygen consumption rate (OCR) and dynamic changes in glucose and glutamine metabolism. Knockdown of HIF-2α also led to increased OCR, and elevated expression of CHCHD4, NDUFB10, and COXIV in 786O cells. Expression of pVHL mutant proteins (R200W, N78S, D126N, and S183L) that constitutively stabilize HIF-α but differentially promote glycolytic metabolism, were also found to differentially promote the pVHL-mediated mitochondrial phenotype. Parallel changes in mitochondrial morphology and the mitochondrial network were observed. Our study reveals a new role for pVHL in regulating CHCHD4 and mitochondrial function in renal carcinoma cells.

12.
Oxid Med Cell Longev ; 2018: 8238459, 2018.
Article in English | MEDLINE | ID: mdl-30363917

ABSTRACT

Most mammalian tissue cells experience oxygen partial pressures in vivo equivalent to 1-6% O2 (i.e., physioxia). In standard cell culture, however, headspace O2 levels are usually not actively regulated and under these conditions are ~18%. This drives hyperoxia in cell culture media that can affect a wide variety of cellular activities and may compromise the ability of in vitro models to reproduce in vivo biology. Here, we review and discuss some specific O2-consuming organelles and enzymes, including mitochondria, NADPH oxidases, the transplasma membrane redox system, nitric oxide synthases, xanthine oxidase, and monoamine oxidase with respect to their sensitivities to O2 levels. Many of these produce reactive oxygen and/or nitrogen species (ROS/RNS) as either primary end products or byproducts and are acutely sensitive to O2 levels in the range from 1% to 18%. Interestingly, many of them are also transcriptional targets of hypoxia-inducible factors (HIFs) and chronic cell growth at physioxia versus 18% O2 may alter their expression. Aquaporins, which facilitate hydrogen peroxide diffusion into and out of cells, are also regulated by HIFs, indicating that O2 levels may affect intercellular communication via hydrogen peroxide. The O2 sensitivities of these important activities emphasize the importance of maintaining physioxia in culture.


Subject(s)
Cell Culture Techniques/standards , Oxygen Consumption , Oxygen/metabolism , Animals , Cell Respiration , Humans , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
13.
Biochem Biophys Res Commun ; 493(1): 246-251, 2017 11 04.
Article in English | MEDLINE | ID: mdl-28899780

ABSTRACT

Although oxygen levels in the extracellular space of most mammalian tissues are just a few percent, under standard cell culture conditions they are not regulated and are often substantially higher. Some cellular sources of reactive oxygen species, like NADPH oxidase 4, are sensitive to oxygen levels in the range between 'normal' physiological (typically 1-5%) and standard cell culture (up to 18%). Hydrogen peroxide in particular participates in signal transduction pathways via protein redox modifications, so the potential increase in its production under standard cell culture conditions is important to understand. We measured the rates of cellular hydrogen peroxide production in some common cell lines, including C2C12, PC-3, HeLa, SH-SY5Y, MCF-7, and mouse embryonic fibroblasts (MEFs) maintained at 18% or 5% oxygen. In all instances the rate of hydrogen peroxide production by these cells was significantly greater at 18% oxygen than at 5%. The increase in hydrogen peroxide production at higher oxygen levels was either abolished or substantially reduced by treatment with GKT 137831, a selective inhibitor of NADPH oxidase subunits 1 and 4. These data indicate that oxygen levels experienced by cells in culture influence hydrogen peroxide production via NADPH oxidase 1/4, highlighting the importance of regulating oxygen levels in culture near physiological values. However, we measured pericellular oxygen levels adjacent to cell monolayers under a variety of conditions and with different cell lines and found that, particularly when growing at 5% incubator oxygen levels, pericellular oxygen was often lower and variable. Together, these observations indicate the importance, and difficulty, of regulating oxygen levels experienced by cells in culture.


Subject(s)
Hydrogen Peroxide/metabolism , Mouse Embryonic Stem Cells/metabolism , Oxidative Stress/physiology , Oxygen Consumption/physiology , Oxygen/metabolism , Animals , HeLa Cells , Humans , MCF-7 Cells , Mice
14.
Acta Histochem ; 119(3): 315-326, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28314612

ABSTRACT

Mitochondria exist in a dynamic cycle of fusion and fission whose balance directly influences the morphology of the 'mitochondrial network', a term that encompasses the branched, reticular structure of fused mitochondria as well as the separate, punctate individual organelles within a eukaryotic cell. Over the past decade, the significance of the mitochondrial network has been increasingly appreciated, motivating the development of various approaches to analyze it. Here, we describe the Mitochondrial Network Analysis (MiNA) toolset, a relatively simple pair of macros making use of existing ImageJ plug-ins, allowing for semi-automated analysis of mitochondrial networks in cultured mammalian cells. MiNA is freely available at https://github.com/ScienceToolkit/MiNA. The tool incorporates optional preprocessing steps to enhance the quality of images before converting the images to binary and producing a morphological skeleton for calculating nine parameters to quantitatively capture the morphology of the mitochondrial network. The efficacy of the macro toolset is demonstrated using a sample set of images from SH-SY5Y, C2C12, and mouse embryo fibroblast (MEF) cell cultures treated under different conditions and exhibiting hyperfused, fused, and fragmented mitochondrial network morphologies.


Subject(s)
Cytological Techniques/methods , Fibroblasts/cytology , Mitochondria/ultrastructure , Software , Animals , Cell Culture Techniques , Cell Line , Humans , Mice , Staining and Labeling
15.
Biochem Biophys Res Commun ; 485(2): 249-254, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28235489

ABSTRACT

Resveratrol (RES) is a plant-derived stilbene associated with a wide range of health benefits. Mitochondria are a key downstream target of RES, and in some cell types RES promotes mitochondrial biogenesis, altered cellular redox status, and a shift toward oxidative metabolism. Mitochondria exist as a dynamic network that continually remodels via fusion and fission processes, and the extent of fusion is related to cellular redox status and metabolism. We investigated RES's effects on mitochondrial network morphology in several cell lines using a quantitative approach to measure the extent of network fusion. 48 h continuous treatment with 10-20 µM RES stimulated mitochondrial fusion in C2C12 myoblasts, PC3 cancer cells, and mouse embryonic fibroblasts stimulated significant increases in fusion in all instances, resulting in larger and more highly branched mitochondrial networks. Mitofusin-2 (Mfn2) is a key protein facilitating mitochondrial fusion, and its expression was also stimulated by RES. Using Mfn2-null cells we demonstrated that RES's effects on mitochondrial fusion, cellular respiration rates, and cell growth are all dependent upon the presence of Mfn2. Taken together, these results demonstrate that Mfn2 and mitochondrial fusion are affected by RES in ways that appear to relate to RES's known effects on cellular metabolism and growth.


Subject(s)
Antioxidants/pharmacology , GTP Phosphohydrolases/metabolism , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Mitochondrial Proteins/metabolism , Stilbenes/pharmacology , Animals , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , GTP Phosphohydrolases/genetics , Gene Deletion , Humans , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Proteins/genetics , Resveratrol
16.
Biochim Biophys Acta Bioenerg ; 1858(1): 73-85, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27836699

ABSTRACT

A variety of mitochondria-targeted small molecules have been invented to manipulate mitochondrial redox activities and improve function in certain disease states. 3-Hydroxypropyl-triphenylphosphonium-conjugated imidazole-substituted oleic acid (TPP-IOA) was developed as a specific inhibitor of cytochrome c peroxidase activity that inhibits apoptosis by preventing cardiolipin oxidation and cytochrome c release to the cytosol. Here we evaluate the effects of TPP-IOA on oxidative phosphorylation in isolated mitochondria and on mitochondrial function in live cells. We demonstrate that, at concentrations similar to those required to achieve inhibition of cytochrome c peroxidase activity, TPP-IOA perturbs oxidative phosphorylation in isolated mitochondria. In live SH-SY5Y cells, TPP-IOA partially collapsed mitochondrial membrane potential, caused extensive fragmentation of the mitochondrial network, and decreased apparent mitochondrial abundance within 3h of exposure. Many cultured cell lines rely primarily on aerobic glycolysis, potentially making them less sensitive to small molecules disrupting oxidative phosphorylation. We therefore determined the anti-apoptotic efficacy of TPP-IOA in SH-SY5Y cells growing in glucose or in galactose, the latter of which increases reliance on oxidative phosphorylation for ATP supply. The anti-apoptotic activity of TPP-IOA that was observed in glucose media was not seen in galactose media. It therefore appears that, at concentrations required to inhibit cytochrome c peroxidase activity, TPP-IOA perturbs oxidative phosphorylation. In light of these data it is predicted that potential future therapeutic applications of TPP-IOA will be restricted to highly glycolytic cell types with limited reliance on oxidative phosphorylation.


Subject(s)
Energy Metabolism/drug effects , Imidazoles/pharmacology , Mitochondria/drug effects , Oleic Acid/pharmacology , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Cardiolipins/metabolism , Cell Line, Tumor , Cell Respiration/drug effects , Cytochromes c/metabolism , Cytosol/drug effects , Cytosol/metabolism , Female , Galactose/metabolism , Glucose/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Oxidation-Reduction/drug effects , Oxidative Phosphorylation/drug effects , Rats , Rats, Long-Evans
17.
Carbohydr Res ; 424: 15-20, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26918516

ABSTRACT

BODIPY fluorophores bearing azide or terminal alkyne functions were conjugated with glycans modified with terminal alkyne or azido through the Cu(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC) chemistry under microwave heating while these reactions did not proceed when heated in an oil-bath. The BODIPY-glycan conjugate product 8a undergoes self-assembly into liposomes when hydrated. Formation of liposomes was confirmed by both bright field and confocal microscopy. Fluorescent emission within the liposome was shifted from green to red due to effective high concentrations.


Subject(s)
Boron Compounds/chemistry , Liposomes/ultrastructure , Polysaccharides/chemistry , Click Chemistry , Liposomes/chemistry , Microscopy, Confocal
18.
Longev Healthspan ; 3(1): 4, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24690218

ABSTRACT

Since its inception more than four decades ago, the Mitochondrial Free Radical Theory of Aging (MFRTA) has served as a touchstone for research into the biology of aging. The MFRTA suggests that oxidative damage to cellular macromolecules caused by reactive oxygen species (ROS) originating from mitochondria accumulates in cells over an animal's lifespan and eventually leads to the dysfunction and failure that characterizes aging. A central prediction of the theory is that the ability to ameliorate or slow this process should be associated with a slowed rate of aging and thus increased lifespan. A vast pool of data bearing on this idea has now been published. ROS production, ROS neutralization and macromolecule repair have all been extensively studied in the context of longevity. We review experimental evidence from comparisons between naturally long- or short-lived animal species, from calorie restricted animals, and from genetically modified animals and weigh the strength of results supporting the MFRTA. Viewed as a whole, the data accumulated from these studies have too often failed to support the theory. Excellent, well controlled studies from the past decade in particular have isolated ROS as an experimental variable and have shown no relationship between its production or neutralization and aging or longevity. Instead, a role for mitochondrial ROS as intracellular messengers involved in the regulation of some basic cellular processes, such as proliferation, differentiation and death, has emerged. If mitochondrial ROS are involved in the aging process, it seems very likely it will be via highly specific and regulated cellular processes and not through indiscriminate oxidative damage to macromolecules.

19.
Article in English | MEDLINE | ID: mdl-22708124

ABSTRACT

Within mammalian species, standard metabolic rate (SMR) increases disproportionately with body mass (Mb), such that the mass-specific SMR correlates negatively with Mb. This phenomenon can be explained in part by reduced cellular metabolic rates in larger species. To better understand the cause(s) of this cellular metabolic rate allometry we have used an ex vivo approach to isolate and identify potential contributors. Skeletal myoblasts from mammalian species ranging inMb from 30 g to over 300,000 g were isolated and differentiated into myotubes in vitro. Oxygen consumption rates, citrate synthase (CS) activity, and lactate dehydrogenase (LDH) activity were measured in myotubes under standardized conditions. No correlation of any of these parameters was observedwith speciesMb, suggesting that there is no genetic contribution to between-species differences in cellular metabolic rates. Myotubes were incubated in serum from species ranging from 30 g to 400,000 g to determine whether between-species differences in the levels of metabolically important hormones might produce allometric trends in the cultured cells. However, there was no observed effect of serum donor Mb on any of the metabolic characteristicsmeasured. Thus, there is no evidence for a relationship between skeletal muscle oxidative metabolism and Mb in an ex vivo model.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Myoblasts, Skeletal/metabolism , Animals , Basal Metabolism , Cells, Cultured , Citrate (si)-Synthase/metabolism , Energy Metabolism , L-Lactate Dehydrogenase/metabolism , Mammals , Muscle Fibers, Skeletal/enzymology , Myoblasts, Skeletal/enzymology , Oxygen Consumption/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...