Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 901: 166640, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37647965

ABSTRACT

Rivers are key pathways for the transfer of microplastics (MP) to marine environments. However, there are considerable uncertainties about the amount of microplastics transported by rivers to the ocean; this results in inaccuracies in our understanding of microplastic quantity and transport by freshwater systems. Additionally, it has been suggested that rivers may represent long-term sinks, with microplastics accumulating in sediment due to their high density or other biological, chemical, and physical factors. The atmosphere is also an important pathway by which airborne microplastics may enter aquatic habitats. Here, we compare for first time microplastics type and concentration in these key environmental mediums (air, water and sediment) along a major river (Ganges), from sea to source to understand 1) the abundance, 2) the spatial distribution, and 3) characteristics. Mean microplastic abundance settling from the atmosphere was 41.12 MP m2 day-1; while concentrations in sediment were 57.00 MP kg-1 and in water were 0.05 MP L-1. Across all sites and environmental mediums, rayon (synthetically altered cellulose) was the dominant polymer (54-82 %), followed by acrylic (6-23 %) and polyester (9-17 %). Fibres were the dominant shape (95-99 %) and blue was the most common colour (48-79 %). Across water and sediment environmental mediums, the number of microplastics per sample increased from the source of the Ganges to the sea. Additionally, higher population densities correlated with increased microplastic abundance for air and water samples. We suggest that clothing is likely to be the prominent source of microplastics to the river system, influenced by atmospheric deposition, wastewater and direct input (e.g. handwashing of clothes in the Ganges), especially in high density population areas. However, we suggest that subsequent microplastic release to the marine environment is strongly influenced by polymer type and shape, with a large proportion of denser microplastics settling in sediment prior to the river discharging to the ocean.

2.
PLoS One ; 18(1): e0278997, 2023.
Article in English | MEDLINE | ID: mdl-36652417

ABSTRACT

Plastic waste is a significant environmental pollutant that is difficult to monitor. We created a system of neural networks to analyze spectral, spatial, and temporal components of Sentinel-2 satellite data to identify terrestrial aggregations of waste. The system works at wide geographic scale, finding waste sites in twelve countries across Southeast Asia. We evaluated performance in Indonesia and detected 374 waste aggregations, more than double the number of sites found in public databases. The same system deployed in Southeast Asia identifies 996 subsequently confirmed waste sites. For each detected site, we algorithmically monitor waste site footprints through time and cross-reference other datasets to generate physical and social metadata. 19% of detected waste sites are located within 200 m of a waterway. Numerous sites sit directly on riverbanks, with high risk of ocean leakage.


Subject(s)
Environmental Monitoring , Environmental Pollutants , Plastics , Asia, Southeastern , Indonesia
4.
Environ Sci Technol ; 56(7): 4029-4038, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35302757

ABSTRACT

Efforts to understand macroplastic pollution have primarily focused on coastal and marine environments to the exclusion of freshwater, terrestrial, and urban ecosystems. To better understand macroplastics in the environment and their sources, a dual approach examining plastic input and leakage can be used. In this study, litter aggregation pathways at 40 survey sites with varying ambient population counts in the Ganges River Basin were surveyed in pre- and postmonsoon seasons. We examine active litter leakage using transect surveys of on-the-ground items, in conjunction with assessments of single-use plastic consumer products at the point of sale. We find that sites with low populations have a significantly higher number of littered items per 1,000 people than those with mid to high populations. Over 75% of litter items were plastics or multimaterial items containing plastic, and tobacco products and plastic food wrappers were the most recorded items. There was no significant variation of litter densities pre- and postmonsoon. Most single-use plastic consumer products were manufactured in-country, but approximately 40% of brands were owned by international companies. Stratified sampling of active litter input and consumer products provides a rapid, replicable snapshot of plastic use and leakage.


Subject(s)
Rivers , Waste Products , Ecosystem , Environmental Monitoring , Humans , Plastics , Waste Products/analysis
5.
Sci Total Environ ; 797: 149098, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34303234

ABSTRACT

Marine plastics are considered to be a major threat to the sustainable use of marine and coastal resources of the Caribbean, on which the region relies heavily for tourism and fishing. To date, little work has quantified plastics within the Caribbean marine environment or examined their potential sources. This study aimed to address this by holistically integrating marine (surface water, subsurface water and sediment) and terrestrial sampling and Lagrangian particle tracking to examine the potential origins, flows and quantities of plastics within the Southern Caribbean. Terrestrial litter and the microplastics identified in marine samples may arise from the maritime and tourism industries, both of which are major contributors to the economies of the Caribbean region. The San Blas islands, Panama had the highest abundance of microplastics at a depth of 25 m, and significantly greater quantities in surface water than recorded in the other countries. Modelling indicated the microplastics likely arose from mainland Panama, which has some of the highest levels of mismanaged waste. Antigua had among the lowest quantities of terrestrial and marine plastics, yet the greatest diversity of polymers. Modelling indicated the majority of the microplastics in Antiguan coastal surface were likely to have originated from the wider North Atlantic Ocean. Ocean currents influence the movements of plastics and thus the relative contributions arising from local and distant sources which become distributed within a country's territorial water. These transboundary movements can undermine local or national legislation aimed at reducing plastic pollution. While this study presents a snapshot of plastic pollution, it contributes towards the void of knowledge regarding marine plastic pollution in the Caribbean Sea and highlights the need for international and interdisciplinary collaborative research and solutions to plastic pollution.


Subject(s)
Plastics , Water Pollutants, Chemical , Caribbean Region , Environmental Monitoring , Environmental Pollution , Microplastics , Water Pollutants, Chemical/analysis
6.
Environ Pollut ; 274: 116348, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33423832

ABSTRACT

Microplastics (plastic < 5 mm in size) are now known to contaminate riverine systems but understanding about how their concentrations vary spatially and temporally is limited. This information is critical to help identify key sources and pathways of microplastic and develop management interventions. This study provides the first investigation of microplastic abundance, characteristics and temporal variation along the Ganges river; one of the most important catchments of South Asia. From 10 sites along a 2575 km stretch of the river, 20 water samples (3600 L in total) were filtered (60 samples each from pre- and post-monsoon season). Overall, 140 microplastic particles were identified, with higher concentrations found in the pre-monsoon (71.6%) than in post-monsoon (61.6%) samples. The majority of microplastics were fibres (91%) and the remaining were fragments (9%). We estimate that the Ganges, with the combined flows of the Brahmaputra and Meghna rivers (GBM), could release up to 1-3 billion (109) microplastics into the Bay of Bengal (north-eastern portion of the Indian Ocean) every day. This research provides the first step in understanding microplastic contamination in the Ganges and its contribution to the oceanic microplastic load.


Subject(s)
Microplastics , Water Pollutants, Chemical , Asia , Environmental Monitoring , Indian Ocean , Plastics , Rivers , Water , Water Pollutants, Chemical/analysis
7.
PLoS One ; 15(12): e0242459, 2020.
Article in English | MEDLINE | ID: mdl-33264309

ABSTRACT

Rivers worldwide are now acting as major transport pathways for plastic pollution and discharge large quantities of waste into the ocean. Previous oceanographic modelling and current drifter data have been used to predict the movement and accumulation of plastic pollution in the marine environment, but our understanding of the transport and fate through riparian systems is still largely unknown. Here we undertook a proof of concept study by applying open source tracking technology (both GPS (Global Positing System) cellular networks and satellite technology), which have been successfully used in many animal movement studies, to track the movements of individual plastic litter items (500 ml PET (polyethylene terephthalate) drinks bottles) through the Ganges River system (known as the Ganga in India and the Padma and Meghna in Bangladesh, hereafter known as the Ganges) and the Bay of Bengal. Deployed tags were successfully tracked through the Ganges river system and into the Bay of Bengal marine system. The "bottle tags" were designed and built (e.g. shape, size, buoyancy) to replicate true movement patterns of a plastic bottle. The maximum distance tracked to date is 2845 km over a period of 94 days. We discuss lessons learnt from the development of these plastic litter tags, and outline how the potential widespread use of this open source technology has the ability to significantly increase understanding of the location of accumulation areas and the timing of large inputs of plastic pollution into the aquatic system. Furthermore, "bottle tags" may act as a powerful tool for stimulating social behaviour change, informing science-based policy, and as valuable educational outreach tools for public awareness.


Subject(s)
Plastics/analysis , Technology , Water Pollution/analysis , Bangladesh , Geography , Oceans and Seas , Rivers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...