Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Vet Med Int ; 2011: 670987, 2010 Dec 06.
Article in English | MEDLINE | ID: mdl-21188166

ABSTRACT

The aim of this study was to investigate the ultrastructural characteristics of primordial follicles after culturing of sheep ovarian cortical slices in the presence of indol acetic acid (IAA), Epidermal Growth Factor (EGF), and FSH. To evaluate ultrastructure of primordial follicles cultured in MEM (control) or in MEM containing IAA, EGF, and FSH, fragments of cultured tissue were processes for transmission electron microscopy. Except in the control, primordial follicles cultured in supplemented media for 6 d were ultrastructurally normal. They had oocyte with intact nucleus and the cytoplasm contained heterogeneous-sized lipid droplets and numerous round or elongated mitochondria with intact parallel cristae were observed. Rough endoplasmic reticulum (RER) was rarely found. The granulosa cells cytoplasm contained a great number of mitochondria and abundant RER. In conclusion, the presence of IAA, EGF, and FSH helped to maintain ultrastructural integrity of sheep primordial follicles cultured in vitro.

2.
Cloning Stem Cells ; 11(3): 367-75, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19594386

ABSTRACT

The immediate events of genomic reprogramming at somatic cell nuclear transfer (SCNT) are to high degree unknown. This study was designed to evaluate the nuclear and nucleolar changes during the first cell cycle. Bovine SCNT embryos were produced from starved bovine fibroblasts and fixed at 0.5, 1, 2, 3, 4, 8, 12, and 16 h postactivation (hpa). Parthenogenetic (PA) embryos were used as control. The SCNT and PA embryos were processed for lacmoid staining, autoradiography, transmission electron microscopy (TEM), and immunofluorescence localization of: upstream binding factor (UBF) and fibrillarin at 4 and 12 hpa. Likewise, starved and nonstarved fibroblasts were processed for autoradiography and TEM. The fibroblasts displayed strong transcriptional activity and active fibrillogranular nucleoli. None of the reconstructed embryos, however, displayed transcriptional activity. In conclusion, somatic cell nuclei introduced into enucleated oocytes displayed chromatin condensation, partial nuclear envelope breakdown, nucleolar desegregation and transcriptional quiescence already at 0.5 hpa. Somatic cell cytoplasm remained temporally attached to introduced nucleus and nucleolus was partially restored indicating somatic influence in the early SCNT phases. At 1-3 hpa, chromatin gradually decondensed toward the nucleus periphery and nuclear envelope reformed. From 4 hpa, the somatic cell nucleus gained a PN-like appearance and displayed NPBs suggesting ooplasmic control of development.


Subject(s)
Cell Cycle/physiology , Cell Nucleolus/metabolism , Chromatin Assembly and Disassembly/physiology , Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Nuclear Transfer Techniques , Animals , Cattle , Cells, Cultured , Chromosomal Proteins, Non-Histone/biosynthesis , Embryo, Mammalian/cytology , Fibroblasts/cytology , Gene Expression Regulation, Developmental/physiology , Nuclear Envelope/metabolism , Pol1 Transcription Initiation Complex Proteins/biosynthesis
3.
Dev Biol ; 330(2): 286-304, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19358838

ABSTRACT

Here we examine how BMP, Wnt, and FGF signaling modulate activin-induced mesendodermal differentiation of mouse ES cells grown under defined conditions in adherent monoculture. We monitor ES cells containing reporter genes for markers of primitive streak (PS) and its progeny and extend previous findings on the ability of increasing concentrations of activin to progressively induce more ES cell progeny to anterior PS and endodermal fates. We find that the number of Sox17- and Gsc-expressing cells increases with increasing activin concentration while the highest number of T-expressing cells is found at the lowest activin concentration. The expression of Gsc and other anterior markers induced by activin is prevented by treatment with BMP4, which induces T expression and subsequent mesodermal development. We show that canonical Wnt signaling is required only during late stages of activin-induced development of Sox17-expressing endodermal cells. Furthermore, Dkk1 treatment is less effective in reducing development of Sox17(+) endodermal cells in adherent culture than in aggregate culture and appears to inhibit nodal-mediated induction of Sox17(+) cells more effectively than activin-mediated induction. Notably, activin induction of Gsc-GFP(+) cells appears refractory to inhibition of canonical Wnt signaling but shows a dependence on early as well as late FGF signaling. Additionally, we find a late dependence on FGF signaling during induction of Sox17(+) cells by activin while BMP4-induced T expression requires FGF signaling in adherent but not aggregate culture. Lastly, we demonstrate that activin-induced definitive endoderm derived from mouse ES cells can incorporate into the developing foregut endoderm in vivo and adopt a mostly anterior foregut character after further culture in vitro.


Subject(s)
Activins/pharmacology , Embryonic Stem Cells/cytology , Endoderm/drug effects , Fibroblast Growth Factors/metabolism , Signal Transduction , Wnt Proteins/metabolism , Animals , Base Sequence , Cell Differentiation , Cells, Cultured , Chick Embryo , Endoderm/cytology , Flow Cytometry , Fluorescent Antibody Technique , Mice , RNA, Small Interfering , Reverse Transcriptase Polymerase Chain Reaction
4.
Reproduction ; 136(4): 433-45, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18606825

ABSTRACT

In ruminants, the greatest period of embryonic loss coincides with the period of elongation when the embryonic disc is formed and gastrulation occurs prior to implantation. The impact of early embryonic mortality is not only a major obstacle to the cattle breeding industry but also impedes the application of new reproductive technologies such as somatic cell nuclear transfer (SCNT). In the present study, days 14 and 21 bovine embryos, generated by either in vitro-production (IVP) or SCNT, performed by either subzonal injection (SUZI) or handmade cloning (HMC), were compared by stereomicroscopy, immunohistochemistry, and transmission electron microscopy to establish in vivo developmental milestones. Following morphological examination, samples were characterized for the presence of epiblast (POU5F1), mesoderm (VIM), and neuroectoderm (TUBB3). On D14, only 25, 15, and 7% of IVP, SUZI, and HMC embryos were recovered from the embryos transferred respectively, and similar low recovery rates were noted on D21, suggesting that most of the embryonic loss had already occurred by D14. A number of D14 IVP, SUZI, and HMC embryos lacked an epiblast, but presented trophectoderm and hypoblast. When the epiblast was present, POU5F1 staining was limited to this compartment in all types of embryos. At the ultrastructural level, SCNT embryos displayed abundant secondary lysosomes and vacuoles, had fewer mitochondria, polyribosomes, tight junctions, desmosomes, and tonofilaments than their IVP counterparts. The staining of VIM and TUBB3 was less distinct in SCNT embryos when compared with IVP embryos, indicating slower or compromised development. In conclusion, SCNT and to some degree, IVP embryos displayed a high rate of embryonic mortality before D14 and surviving embryos displayed reduced quality with respect to ultrastructural features and differentiation markers.


Subject(s)
Blastocyst/physiology , Embryonic Development , Fertilization in Vitro/veterinary , Nuclear Transfer Techniques/veterinary , Animals , Biomarkers/analysis , Blastocyst/cytology , Blastocyst/ultrastructure , Cattle , Embryo Culture Techniques/veterinary , Female , Fetal Death , Gestational Age , Immunohistochemistry , Microscopy, Electron, Transmission , Pregnancy
5.
Zygote ; 16(2): 93-110, 2008 May.
Article in English | MEDLINE | ID: mdl-18405430

ABSTRACT

The low efficiency of somatic cell nuclear transfer may be related to the ultrastructural deviations of reconstructed embryos. The present study investigated ultrastructural differences between in vivo-produced and cloned goat embryos, including intra- and interspecies embryos. Goat ear fibroblast cells were used as donors, while the enucleated bovine and goat oocytes matured in vitro as recipients. Goat-goat (GG), goat-cattle (GC) and goat in vivo-produced embryos at the 2-cell, 4-cell, 8-cell and 16-cell stages were compared using transmission electron microscopy. These results showed that the three types of embryos had a similar tendency for mitochondrial change. Nevertheless, changes in GG embryos were more similar to changes in in vivo-produced embryos than were GC embryos, which had more extreme mitochondrial deviation. The results indicate the effects of the cytoplast on mitochondria development. The zona pellucida (ZP) in all three types of embryos became thinner and ZP pores in both GC and GG embryos showed an increased rate of development, especially for GC embryos, while in vivo-produced embryos had smooth ZP. The Golgi apparatus (Gi) and rough endoplasmic reticulum (RER) of the two reconstructed embryos became apparent at the 8-cell stage, as was found for in vivo embryos. The results showed that the excretion of reconstructed embryos was activated on time. Lipid droplets (LD) of GC and GG embryos became bigger, and congregated. In in vivo-produced embryos LD changed little in volume and dispersed gradually from the 4-cell period. The nucleolus of GC and GG embryos changed from electron dense to a fibrillo-granular meshwork at the 16-cell stage, showing that nucleus function in the reconstructed embryos was activated. The broken nuclear envelope and multiple nucleoli in one blastomere illuminated that the nucleus function of reconstructed embryos was partly changed. In addition, at a later stage in GC embryos the nuclear envelope displayed infoldings and the chromatin was concentrated, implying that the blastomeres had an obvious trend towards apoptosis. The gap junctions of the three types of embryos changed differently and GG and GC embryos had bigger perivitelline and intercellular spaces than did in vivo-produced embryos. These results are indicative of normal intercellular communication at an early stage, but this became weaker in later stages in reconstructed embryos. In conclusion, inter- and intraspecies reconstructed embryos have a similar pattern of developmental change to that of in vivo-produced embryos for ZP, rough ER, Gi and nucleolus, but differ for mitochondria, LD, vesicles, nucleus and gap junction development. In particular, the interspecies cloned embryos showed more severe destruction. These ultrastructural deviations might contribute to the compromised developmental potential of reconstructed embryos.


Subject(s)
Cloning, Organism , Embryo, Mammalian/ultrastructure , Goats/embryology , Organelles/ultrastructure , Animals , Blastomeres/ultrastructure , Cattle , Cell Nucleus/ultrastructure , Cytoplasm/ultrastructure , Cytoplasmic Vesicles/ultrastructure , Embryonic Development , Endoplasmic Reticulum/ultrastructure , Fertilization in Vitro , Gap Junctions/ultrastructure , Goats/genetics , Golgi Apparatus/ultrastructure , Lipids/physiology , Lysosomes/ultrastructure , Microscopy, Electron, Transmission , Mitochondria/physiology , Mitochondria/ultrastructure , Nuclear Transfer Techniques , Zona Pellucida/ultrastructure
6.
Mol Reprod Dev ; 75(8): 1318-26, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18247367

ABSTRACT

Our objective was to document potential subcellular consequences of treatment with the microtubule stabilizer Taxol with or without subsequent vitrification of cow and calf oocytes by the open pulled straw (OPS) method. Oocytes were divided into four experimental groups for cows and four groups for calves: (1) a control group fixed immediately after maturation; (2) an OPS group cryopreserved by conventional OPS; (3) a Taxol/CPA group exposed to 1 microM Taxol and cryoprotective agents (CPAs); and (4) a Taxol/OPS group vitrified by OPS including 1 microM Taxol to the vitrification solution. All oocytes were processed for light and transmission electron microscopy. The main injuries were observed on the metaphase plate and the spindle. In control oocytes, the metaphase appeared as condensed chromosomes arranged in a well-organized metaphase plate and the spindle showed well organized microtubules in both cow and calf oocytes. However, in cow OPS oocytes, the metaphase plate was disorganized into scattered chromosomes or the chromosomes were condensed into a single block of chromatin. In addition, microtubules were not organized as typical spindles. In contrast, cow Taxol/OPS oocytes as well as both cow and calf Taxol/CPAs oocytes showed well-organized metaphase plates and normal spindle morphology. All calf OPS and calf Taxol/OPS oocytes displayed a single block of chromatin and no microtubules could be observed around the chromosomes. In conclusion, treatment with 1 microM Taxol before and during vitrification did not induce adverse changes in the oocyte cytoplasm or metaphase spindles in adult bovine oocytes, but stabilized the metaphase and spindle morphology.


Subject(s)
Cryopreservation/methods , Oocytes/drug effects , Oocytes/ultrastructure , Paclitaxel/pharmacology , Spindle Apparatus/drug effects , Tubulin Modulators/pharmacology , Animals , Cattle , Cryoprotective Agents/pharmacology , Female , Microscopy, Electron, Transmission
7.
Mol Reprod Dev ; 75(5): 915-24, 2008 May.
Article in English | MEDLINE | ID: mdl-17948251

ABSTRACT

The complexity of the events which orchestrate mammalian oocyte growth and ultimate acquisition of developmental competence is still unclear and under continuous investigation. Starting from the observation that germinal vesicle (GV) bovine oocytes exhibit different patterns of chromatin configuration (from GV0 to GV3), the present study aimed at analyzing the morphology of the nuclear and the cytoplasmic compartments and to determine the total transcriptional activity of immature oocytes sorted on the basis of their chromatin configuration. The oocyte morphology was analyzed by light microscopy (LM) on semi-thin sections and transmission electron microscopy, and the global transcriptional activity was analyzed by H(3)-Uridine incorporation and subsequent autoradiography on semi-thin sections. LM confirmed the increase in chromatin condensation from GV0 to GV3. Ultrastructurally, the nucleolus was fibrillo granular at GV0 while the other stages displayed an electron-dense fibrillar sphere with the remnant of a fibrillar center on the surface. Organelles were dispersed in the cytoplasm at GV0 while at GV1 and GV2 most of them were homogenously distributed in the oocyte cortex. At GV3 most organelles were found in clusters in the oocyte cortex. Typical features of completion of the oocyte growth phase, like undulation of the nuclear envelope and reduction of the size of Golgi complex were found at GV2 and GV3. Moreover, GV3 oocytes presented cortical granules that displayed varying degrees of degeneration. Autoradiographic labeling showed that oocytes with GV0 configuration exhibited high level of RNA synthesis, GV1 and GV2 stages showed a remarkable decrease of transcription, and the acquisition of GV3 configuration was associated with global repression of transcriptional activity. Our findings suggest a temporal relationship between the chromatin remodeling process and the main morpho-functional events that characterize the final growth phase in bovine oocyte.


Subject(s)
Chromatin Assembly and Disassembly/physiology , Chromatin/physiology , Cytoplasm/physiology , Gene Silencing/physiology , Oocytes/growth & development , Oocytes/ultrastructure , Animals , Cattle , Cell Nucleolus/physiology , Cell Nucleolus/ultrastructure , Chromatin/ultrastructure , Cytoplasm/ultrastructure , Female , Oocytes/metabolism , RNA/biosynthesis
8.
Mol Reprod Dev ; 74(11): 1428-35, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17410544

ABSTRACT

The goal of the present study was to investigate whether key nucleolar proteins involved in ribosomal RNA (rRNA) transcription and processing are transcribed de novo or from maternally inherited messenger RNAs (mRNA) in bovine embryos, and to which extent de novo transcription of these proteins mRNA is required for the development of functional nucleoli during the major activation of the embryonic genome. Immunofluorescence for localization of key nucleolar proteins, autoradiography for detection of transcriptional activity, and transmission electron microscopy were applied to in vitro produced bovine embryos cultured from the 2-cell stage with or without (control groups) alpha-amanitin, which blocks the RNA polymerases II and III transcription and, thus the synthesis of mRNA. In the control groups, weak autoradiographic labeling was initially observed in the periphery of few nuclei at the 4-cell and the early 8-cell stage, and the entire nucleoplasm as well as nucleolus precursor bodies (NBBs) were prominently labelled in all late 8-cell stages. The NPBs displayed initial transformation into fibrillo-granular nucleoli. In the alpha-amanitin group, lack of autoradiographic labeling was seen at all developmental stages and disintegrated NPBs stage were found at the late 8-cell. Our immunofluorescence data indicate that RNA polymerase I, UBF, topoisomerase I and fibrillarin are transcribed de novo whereas nucleolin and nucleophosmin are maternally inherited as demonstrated by alpha -amanitin inhibition. However, localization of these two proteins to the nucleolar compartments was negatively affected by the alpha-amanitin treatment. Consequently, functional nucleoli were not established.


Subject(s)
Cattle/embryology , Cell Nucleolus/metabolism , Embryonic Structures/metabolism , Nucleoproteins/genetics , Transcription, Genetic , Animals , Cell Cycle , Cell Nucleolus/chemistry , Cell Nucleolus/ultrastructure , Embryonic Development , Embryonic Structures/chemistry , Immunohistochemistry , Microscopy, Confocal , Nucleoproteins/analysis , Nucleoproteins/metabolism , RNA, Messenger/biosynthesis , RNA, Ribosomal/metabolism
9.
Mol Reprod Dev ; 74(8): 961-71, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17393434

ABSTRACT

In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced embryos. Pre-implantation embryos (2-cell to Day 8 blastocysts) were cultured with either no supplementation (untreated) or with 10 microM staurosporine for 24 hr (treated). Embryos were subjected to immunohistochemical staining of active caspase-3, TUNEL-reaction for detection of DNA degradation and DAPI staining for detection of apoptotic nuclear morphology, and subjected to fluorescence microscopy. Additionally, treated and untreated blastocysts were fixed and processed for ultrastructural identification of apoptosis. Untreated embryos revealed no apoptotic features at 2- and 4-cell stages. However, active caspase-3 and apoptotic nuclear morphology were observed in an untreated 8-cell stage, and TUNEL-labeling was observed from the 16-cell stage. Blastomeres concurrently displaying all apoptotic features were present in a few embryos at 16-cell and morula stages and in all blastocysts. All three features were observed from the 8-cell stage in treated embryos, and blastomeres with apoptotic features appeared more numerous in treated than in untreated embryos. Ultrastructural evidence of apoptosis occurred with a comparable distribution pattern as apoptotic features detected by fluorescence microscopy in both treated and untreated blastocysts. Activation of caspase-3 is likely involved in both spontaneous and induced apoptosis in bovine pre-implantation embryos, and immunohistochemical staining of active caspase-3 may be used in combination with other markers to identify apoptosis in pre-implantation embryos.


Subject(s)
Apoptosis/physiology , Blastocyst , Caspase 3/metabolism , Animals , Blastocyst/metabolism , Blastocyst/ultrastructure , Cattle , Cell Nucleus/ultrastructure , Cells, Cultured , Enzyme Activation , Enzyme Inhibitors/metabolism , In Situ Nick-End Labeling , Staurosporine/metabolism
10.
Mol Reprod Dev ; 74(1): 35-41, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16941707

ABSTRACT

The onset of ribosomal RNA (rRNA) synthesis occurs during the second half of the third cell cycle, that is, at the four-cell stage, in porcine embryos developed in vivo. In the present study the onset of rRNA synthesis was investigated in porcine embryos produced in vitro (IVP) or by somatic cell nuclear transfer (SCNT) using fluorescence in situ hybridization (FISH) with an rDNA probe and subsequent visualization of the nucleolar proteins by silver staining. In the 205 IVP embryos investigated, all two-cell embryos (n = 34) were categorized as transcriptionally inactive. At the late four-cell stage (n = 45), 38% of the embryos contained 1-3 nuclei with signs of rRNA transcription, indicating an asynchronous transcription initiation. This pattern continued in the following stages, as 78% (n = 47), 47% (n = 42) and 83% (n = 37) of the embryos revealed a mixture of transcriptionally inactive and active cells at the eight-cell, 16-cell and blastocyst stage, respectively. In the 143 SCNT embryos investigated, all two-cell embryos (n = 34) and early four-cell embryos (n = 12) were also transcriptionally inactive. At the late four-cell stage (n = 33) and at the eight-cell stage (n = 24) there were equal proportions of transcriptionally active and inactive embryos and essentially all embryos that developed to the 16-cell stage (n = 21) and further to the blastocyst stage (n = 19) contained only transcriptionally active cells. In conclusion, porcine embryos produced in vitro had an asynchronous pattern of rRNA transcription initiation when compared to SCNT and in vivo developed porcine embryos.


Subject(s)
Embryo, Mammalian/metabolism , Genes, rRNA/genetics , Nuclear Transfer Techniques , RNA, Ribosomal/biosynthesis , Sus scrofa/embryology , Transcriptional Activation , Animals , Embryo, Mammalian/chemistry , Embryonic Development , Fertilization in Vitro , RNA, Ribosomal/analysis , RNA, Ribosomal/genetics , Sus scrofa/genetics , Transcription, Genetic
11.
Adv Exp Med Biol ; 591: 84-92, 2007.
Article in English | MEDLINE | ID: mdl-17176556

ABSTRACT

Transcription of the ribosomal RNA (rRNA) genes occurs in the nucleolus and results in ribosome biogenesis. The rRNA gene activation and the associated nucleolus formation may be used as a marker for the activation of the embryonic genome in mammalian embryos and, thus serve to evaluate the developmental potential of embryos originating from varied nuclear transfer protocols. In bovine in vivo developed embryos, functional ribosome-synthesizing nucleoli become structurally distinct toward the end of the 4th post-fertilization cell cycle. In embryonic cell nuclear transfer embryos, fully developed nucleoli are not apparent until the 5th cell cycle, whereas in somatic cell nuclear transfer embryos the functional nucleoli emerge already during the 3rd cell cycle. Intergeneric reconstructed embryos produced by the fusion of bovine differentiated somatic cell to a nonactivated ovine cytoplast fail to develop fully functional nucleoli. In bovine in vivo developed embryos, a range of important nucleolar proteins (e.g., topoisomerase I, upstream binding factor and RNA polymerase I, fibrillarin, nucleophosmin and nucleolin) become localized to the nucleolar anlage over several cell cycles. This relocation is completed toward the end of the 4th cell cycle. A substantial proportion of bovine embryos produced by nuclear transfer of embryonic or somatic cells to bovine ooplasts display aberrations in protein localization in one or more blastomers. This information is indicative of underlying aberrations in genomic reprogramming and may help to explain the abnormalities observed in a proportion of fetuses and offspring derive from nuclear transfer embryos.


Subject(s)
Cell Nucleolus/genetics , Cloning, Organism/methods , Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , Nuclear Transfer Techniques/standards , Research Embryo Creation/methods , Animals , Cattle , Cell Differentiation/genetics , Cell Division/genetics , Embryo, Mammalian/abnormalities , Humans , Nuclear Proteins/genetics , Transcriptional Activation/genetics
12.
Mol Reprod Dev ; 73(6): 709-18, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16541449

ABSTRACT

In the areas of developmental biology and embryonic stem cell research, reliable molecular markers of pluripotency and early lineage commitment are sparse in large animal species. In this study, we present morphological and immunohistochemical findings on the porcine embryo in the period around gastrulation, days 8-17 postinsemination, introducing a stereomicroscopical staging system in this species. In embryos at the expanding hatched blastocyst stage, OCT4 is confined to the inner cell mass. Following detachment of the hypoblast, and formation of the embryonic disk, this marker of pluripotency was selectively observed in the epiblast. A prominent crescent-shaped thickening at the posterior region of the embryonic disk marked the first polarization within this structure reflecting incipient cell ingression. Following differentiation of the epiblast, clearance of OCT4 from the three germ layers was observed at defined stages, suggesting correlations to lineage specification. In the endoderm, clearance of OCT4 was apparent from early during its formation at the primitive streak stage. The endoderm harbored progenitors of the "fourth germ layer," the primordial germ cells (PGCs), the only cells maintaining expression of OCT4 at the end of gastrulation. In the ectodermal and mesodermal cell lineages, OCT4 became undetectable at the neural groove and somite stage, respectively. As in the mouse, PGCs showed onset of c-kit expression when located in extraembryonal compartments. They appeared to follow the endoderm during extraembryonal allocation and the mesoderm on return to the genital ridge.


Subject(s)
Embryo, Mammalian , Embryonic Development , Octamer Transcription Factor-3/metabolism , Animals , Embryo, Mammalian/anatomy & histology , Embryo, Mammalian/physiology , Female , Germ Cells/cytology , Germ Cells/physiology , Gestational Age , Mice , Microscopy/methods , Pregnancy , Swine
13.
Mol Reprod Dev ; 73(1): 83-91, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16206133

ABSTRACT

Organochlorine chemicals accumulate in the environment, particularly in the Arctic, and constitute potential developmental hazards to wildlife and human health. Although some of their harmful effects are recognized, their mechanisms of action within the target cells need to be better understood. This study was designed to test the hypothesis that an environmentally-relevant organochlorine mixture alters oocyte ultrastructure in the porcine model. Immature cumulus-oocyte complexes (COCs), partially cultured (18 hr) COCs without treatment or exposed to the organochlorine mixture or its vehicle (0.1% dimethysulfoxide; DMSO) during culture were processed for light and transmission electronic microscopy (TEM). The organochlorines induced major ultrastructural changes in the COCs: decreased density of the lipid droplets, increased smooth endoplasmic reticulum (SER) volume and increased interactions among SER, mitochondria, lipid droplets and vesicles. We suggest that these ultrastructural changes facilitate energy formation necessary to produce metabolizing enzymes. Other ultrastructural changes may reflect some degree of organochlorine toxicity: fewer gap junctions and decreased electron density of the cortical granules. Unexpectedly, the DMSO control treatment also induced similar ultrastructural changes, but to a lesser degree than the organochlorine mixture. This study is the first to demonstrate the effect of environmental contaminants on mammalian oocyte ultrastructure.


Subject(s)
Dimethyl Sulfoxide/pharmacology , Environmental Pollutants/pharmacology , Hydrocarbons, Chlorinated/pharmacology , Oocytes/drug effects , Solvents/pharmacology , Animals , Microscopy, Electron, Transmission , Oocytes/ultrastructure , Swine
14.
Theriogenology ; 65(1): 153-65, 2006 Jan 07.
Article in English | MEDLINE | ID: mdl-16257443

ABSTRACT

Particular attention has been paid to the pre-hatching period of embryonic development although blastocyst development is a poor indicator of embryo viability. Post-hatching embryonic development in vitro would allow for establishment of more accurate tools for evaluating developmental potential without the need for transfer to recipient animals. Such a system would require (1) definition of milestones of expected post-hatching embryonic development in vivo; and (2) development of adequate culture systems. We propose a stereomicroscopical staging system for post-hatching embryos defining the following stages: (1) Expanded hatched blastocyst stage where the embryo presents an inner cell mass (ICM) covered by trophoblast. (2) Pre-streak stage 1 where the embryonic disc is formed. (3) Pre-streak stage 2 where a crescent-shaped thickening of the caudal portion of the embryonic disk appears. (4) Primitive streak stage where the primitive streak has developed as an axis of cell ingression of cells for meso- and endoderm formation. (5) Neural groove stage where the neural groove is developing from the rostral pole of the embryo along with a proportional shortening of the primitive streak; and (6) Somite stage(s) where paraxial mesoderm gradually condensates to form somites. Post-hatching development of bovine embryos in vitro is compromised and although hatching occurs and elongation can be physically provoked by culture in agarose tunnels, the embryonic disk characterizing the pre-streak stage 1 is never established. Thus, particular focus should be placed on establishing culture conditions that support at least some of the above-mentioned critical phases of development that in vivo occur within the initial two (pig) to three (cattle) weeks.


Subject(s)
Cattle/embryology , Embryo Culture Techniques/veterinary , Embryonic Development/physiology , Morphogenesis/physiology , Swine/embryology , Animals , Blastocyst/cytology , Blastocyst/physiology , Cell Differentiation , Embryo Culture Techniques/methods , Female , Male , Trophoblasts/cytology , Trophoblasts/physiology
15.
Theriogenology ; 64(2): 221-31, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-15955348

ABSTRACT

The paper provides a review of the current state of knowledge on apoptosis during normal preimplantation development based on the literature and on the authors' own findings. Information is focused on the occurrence and the characteristics of spontaneous apoptotic processes. Reports concerning the chronology and the incidence of programmed cell death in mouse, cow, pig and human embryos in early preimplantation stages up to the blastocyst stage are summarized. In addition, specific attributes of the apoptotic process in mammalian preimplantation development are provided, including the description of both morphological and biochemical features of cell death.


Subject(s)
Apoptosis/physiology , Embryonic Development/physiology , Animals , Blastocyst , Cleavage Stage, Ovum , DNA Fragmentation , In Situ Nick-End Labeling
16.
Reprod Fertil Dev ; 17(1-2): 3-14, 2005.
Article in English | MEDLINE | ID: mdl-15745627

ABSTRACT

The nucleolus is the site of rRNA and ribosome production. This organelle presents an active fibrillogranular ultrastructure in the oocyte during the growth of the gamete but, at the end of the growth phase, the nucleolus is transformed into an inactive remnant that is dissolved when meiosis is resumed at germinal vesicle breakdown. Upon meiosis, structures resembling the nucleolar remnant, now referred to as nucleolus precursor bodies (NPBs), are established in the pronuclei. These entities harbour the development of fibrillogranular nucleoli and re-establishment of nucleolar function in conjunction with the major activation of the embryonic genome. This so-called nucleologenesis occurs at a species-specific time of development and can be classified into two different models: one where nucleolus development occurs inside the NPBs (e.g. cattle) and one where the nucleolus is formed on the surface of the NPBs (e.g. pigs). A panel of nucleolar proteins with functions during rDNA transcription (topoisomerase I, RNA polymerase I and upstream binding factor) and early (fibrillarin) or late rRNA processing (nucleolin and nucleophosmin) are localised to specific compartments of the oocyte nucleolus and those engaged in late processing are, to some degree, re-used for nucleologenesis in the embryo, whereas the others require de novo embryonic transcription in order to be allocated to the developing nucleolus. In the oocyte, inactivation of the nucleolus coincides with the acquisition of full meiotic competence, a parameter that may be of importance in relation to in vitro oocyte maturation. In embryo, nucleologenesis may be affected by technological manipulations: in vitro embryo production apparently has no impact on this process in cattle, whereas in the pig this technology results in impaired nucleologenesis. In cattle, reconstruction of embryos by nuclear transfer results in profound disturbances in nucleologenesis. In conclusion, the nucleolus is an organelle of great importance for the developmental competence of oocytes and embryos and may serve as a morphological marker for the completion of oocyte growth and normality of activation of the embryonic genome.


Subject(s)
Cell Nucleolus/physiology , Embryo, Mammalian/ultrastructure , Meiosis , Animals , Cattle , Cell Nucleolus/ultrastructure , Embryonic Development , Mitosis , Nuclear Transfer Techniques , Oocytes/growth & development , Oocytes/ultrastructure , Reproductive Techniques, Assisted/veterinary , Swine , Transcription, Genetic
17.
Reprod Fertil Dev ; 17(1-2): 113-24, 2005.
Article in English | MEDLINE | ID: mdl-15745636

ABSTRACT

Current knowledge on the biology of mammalian embryonic stem cells (ESC) is stunningly sparse in light of their potential value in studies of development, functional genomics, generation of transgenic animals and human medicine. Despite many efforts to derive ESC from other mammalian species, ESC that retain their capacity for germ line transmission have only been verified in the mouse. However, the criterion of germ line transmission may not need to be fulfilled for exploitation of other abilities of these cells. Promising results with human ESC-like cells and adult stem cells have nourished great expectations for their potential use in regenerative medicine. However, such an application is far from reality and substantial research is required to elucidate aspects of the basic biology of pluripotent cells, as well as safety issues associated with the use of such cells in therapy. In this context, methods for the derivation, propagation and differentiation of ESC-like cultures from domestic animals would be highly desirable as biologically relevant models. Here, we review previously published efforts to establish bovine ESC-like cells and describe a procedure used in attempts to derive similar cells from bovine Day 12 embryos.


Subject(s)
Cattle/embryology , Embryo, Mammalian/cytology , Stem Cells , Animals , Cells, Cultured , Genetic Therapy , Stem Cell Transplantation , Swine/embryology , Time Factors
18.
Mol Reprod Dev ; 70(4): 445-54, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15685635

ABSTRACT

In vitro produced (IVP) bovine embryos were subjected to in vitro culture with or without 1000 U/ml human recombinant leukemia inhibitory factor (LIF) added to the culture medium from Days 5 to 8 post insemination (p.i.). Resulting blastocysts were subsequently plated intact on mouse feeder cells in a medium with or without LIF. Significantly more embryos reached the hatched blastocyst stage, and the number of blastocysts with excellent morphology was significantly higher, when LIF was omitted. At Day 8 p.i., total cell count (TCC) and inner cell mass (ICM) cell count was significantly higher in embryos cultured without LIF. In embryos cultured with LIF, cytoplasmic vesicles and lipid droplets were abundant and a decreased expression of both Oct4 and laminin could be observed. Initial hypoblast formation was revealed in almost 1/3 of the LIF-cultured blastocysts whereas this feature was evident in 2/3 of the blastocysts cultured in the absence of LIF. Overall, almost 60% of the blastocysts cultured without LIF formed outgrowth colonies (OCs) when plated on feeders, whereas this phenomenon was only observed in 30% of the blastocysts cultured in the presence of LIF. A tendency for retaining a tightly packed central growth of putative ICM-derived cells was observed, when attachment to the feeder layer was initiated close to the embryonic pole of the blastocyst. At Day 8 of outgrowth culture, approximately 20% of the colonies contained a central core of putative ICM-derived cells appearing large enough for mechanical isolation and further subculture. Immunohistochemical labeling for Oct4 revealed staining of both trophectodermal and ICM-derived cells. The presence of LIF in the outgrowth culture medium did not have any apparent effect on the plating efficiency or colony type. In conclusion, LIF had an adverse effect on in vitro embryonic development when added to the culture medium in the period from Days 5 to 8 p.i., whereas it had no apparent effect on the OCs subsequently formed from such embryos.


Subject(s)
Embryo, Mammalian/drug effects , Fertilization in Vitro , Interleukin-6/pharmacology , Animals , Cattle , In Vitro Techniques , Leukemia Inhibitory Factor
19.
Reprod Fertil Dev ; 17(8): 791-7, 2005.
Article in English | MEDLINE | ID: mdl-16476206

ABSTRACT

The purpose of the present study was to find an efficient and reliable chemically assisted procedure for enucleation related to the handmade cloning (HMC) technique. After in vitro maturation oocytes were incubated in 0.5 microg mL(-1) demecolcine for 2 h. Subsequently, zonae pellucidae were digested with pronase, and one-third of the cytoplasm connected to an extrusion cone was removed by hand using a microblade. The remaining two-thirds were used as recipients for HMC, and reconstructed and activated embryos were cultured for 7 days. The time-dependent manner of the development of extrusion cones, the efficiency (oriented bisection per oocyte; 94%), reliability (success per attempted enucleation; 98%), and the blastocyst per reconstructed embryo rates (48%) were measured. Ultrastructural analyses demonstrated that demecolcine treatment resulted in disoriented and haphazardly orientated microtubules. The general ultrastructure of the oocyte organelles, however, appeared to be unaltered by the treatments. Considering that no oocyte selection based on polar body presence was performed, this system seems to be more efficient and reliable than any other enucleation method. Moreover, expensive equipment (inverted fluorescence microscope) and a potentially harmful step (staining and ultraviolet illumination) can be eliminated from the HMC procedure without compromising the high in vitro efficiency.


Subject(s)
Breeding/methods , Cell Nucleus/drug effects , Cloning, Organism/methods , Cloning, Organism/veterinary , Demecolcine/pharmacology , Oocytes/drug effects , Animals , Cattle , Chromatin/metabolism , Microscopy, Electron, Transmission/veterinary , Microscopy, Fluorescence/veterinary , Microtubules/drug effects , Nuclear Transfer Techniques , Oocytes/ultrastructure
20.
Reprod Fertil Dev ; 17(8): 799-808, 2005.
Article in English | MEDLINE | ID: mdl-16476207

ABSTRACT

Attempts to support survival of mammalian embryos after hatching have met with limited success, although some mouse studies have reported growth at the post-implantation stage. The aim of the present research was to establish and characterise an in vitro culture system that could support extended growth and differentiation of bovine embryos. Abattoir-derived oocytes were matured and fertilised in vitro. Presumptive zygotes were cultured in modified synthetic oviduct fluid (SOFaaci) medium supplemented with 5% cow serum (CS). On Day 9, single hatched blastocysts (n = 160) were randomly allocated to SOFaaci supplemented with either 5% bovine serum albumin, 5% CS, 5% fetal calf serum (FCS) or SOF only and cultured on a collagen gel substrate for up to 45 days. Embryos were evaluated at various time-points until complete disaggregation or the total disappearance of embryonic cells. Blastocyst viability post hatching was severely compromised in protein-free SOFaaci medium. Addition of FCS generated increased embryonic growth for the longest time period (Day 45) when compared to the other groups. Long-term survival of embryonic cells was observed stereomicroscopically by the proliferation and development of three-dimensional tubular structures to 85% confluence in culture. Haematoxylin and eosin staining of morphological structures obtained from all treatment groups revealed embryos displaying trophoblast, inner cell mass and hypoblast development to varying degrees. Regardless of treatment, extended in vitro culture did not result in development comparable with that described for in vivo embryos. In the present work, however, there was evidence of extended culture of bovine embryos beyond that achieved previously. However, further research is required to identify the exact requirements for extended in vitro culture for bovine embryos.


Subject(s)
Embryo Culture Techniques/methods , Embryo Culture Techniques/veterinary , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Fertilization in Vitro/veterinary , Animals , Cattle , Culture Media/chemistry , Fertilization in Vitro/methods , Histological Techniques/veterinary , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...