Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex Commun ; 2(1): tgaa090, 2021.
Article in English | MEDLINE | ID: mdl-34296146

ABSTRACT

Deafferentation is an important determinant of plastic changes in the CNS, which consists of a loss of inputs from the body periphery or from the CNS itself. Although cortical reorganization has been well documented, white matter plasticity was less explored. Our goal was to investigate microstructural interhemispheric connectivity changes in early and late amputated rats. For that purpose, we employed diffusion-weighted magnetic resonance imaging, as well as Western blotting, immunohistochemistry, and electron microscopy of sections of the white matter tracts to analyze the microstructural changes in the corticospinal tract and in the corpus callosum (CC) sector that contains somatosensory fibers integrating cortical areas representing the forelimbs and compare differences in rats undergoing forelimb amputation as neonates, with those amputated as adults. Results showed that early amputation induced decreased fractional anisotropy values and reduction of total myelin amount in the cerebral peduncle contralateral to the amputation. Both early and late forelimb amputations induced decreased myelination of callosal fibers. While early amputation affected myelination of thinner axons, late amputation disrupted axons of all calibers. Since the CC provides a modulation of inhibition and excitation between the hemispheres, we suggest that the demyelination observed among callosal fibers may misbalance this modulation.

2.
PeerJ ; 5: e2927, 2017.
Article in English | MEDLINE | ID: mdl-28194309

ABSTRACT

Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood.

3.
Exp Neurol ; 236(2): 283-97, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22634209

ABSTRACT

Immature neurons migrate tangentially within the rostral migratory stream (RMS) to the adult olfactory bulb (OB), then radially to their final positions as granule and periglomerular neurons; the controls over this transition are not well understood. Using adult transgenic mice with the human GFAP promoter driving expression of enhanced GFP, we identified a population of radial glia-like cells that we term adult olfactory radial glia-like cells (AORGs). AORGs have large, round somas and simple, radially oriented processes. Confocal reconstructions indicate that AORGs variably express typical radial glial markers, only rarely express mouse GFAP, and do not express astroglial, oligodendroglial, neuronal, or tanycyte markers. Electron microscopy provides further supporting evidence that AORGs are not immature neurons. Developmental analyses indicate that AORGs are present as early as P1, and are generated through adulthood. Tracing studies show that AORGs are not born in the SVZa, suggesting that they are born either in the RMS or the OB. Migrating immature neurons from the adult SVZa are closely apposed to AORGs during radial migration in vivo and in vitro. Taken together, these data indicate a newly-identified population of radial glia-like cells in the adult OB that might function uniquely in neuronal radial migration during adult OB neurogenesis.


Subject(s)
Neuroglia/cytology , Neuroglia/physiology , Olfactory Bulb/cytology , Olfactory Bulb/growth & development , Age Factors , Animals , Cell Movement/physiology , Cells, Cultured , Female , Humans , Immunohistochemistry , Mice , Mice, Transgenic , Neurogenesis/physiology , Neuroglia/ultrastructure , Olfactory Bulb/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...