Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 23(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35328608

ABSTRACT

Although seed quality and quantity, as well as reproductive performance are important life history stages of plants, little is known about the reproductive responses of trees to environmental changes such as increased anthropogenic deposition of nitrogen (N) and phosphorus (P). Dioecious plants are good models with which to test the environmental impact on female or male reproductive responses individually. We analysed effects of different long-term nutritional availability on the reproductive performance of two dioecious species (Taxus baccata L. and Juniperus communis L.) characterised by different life histories. By using pot experiments with vegetatively propagated plants grown in different fertilisation conditions, we observed an increase in plant growth and strobili production but a decrease in seed efficiency. Seeds produced by fertilised plants had greater seed mass. Fertiliser addition did not change C or N content nor the C/N ratio of T. baccata seeds, but increased N content and the N/P ratio; however, it did lower the C/N ratio in J. communis. Fertilisation did not change the metabolite profile in T. baccata but 18 metabolites were changed in J. communis. The study revealed new links between species life history, environmental changes, and reproduction. The findings imply that future environmental conditions may alter both seed productivity, and quality, as well as plant reproductive behaviour.


Subject(s)
Juniperus , Seeds , Environment , Fertilization , Plants , Reproduction/physiology
2.
Glob Chang Biol ; 27(16): 3859-3869, 2021 08.
Article in English | MEDLINE | ID: mdl-33934467

ABSTRACT

Harsh environmental conditions affect both leaf structure and root traits. However, shoot growth in high-latitude systems is predominately under photoperiod control while root growth may occur for as long as thermal conditions are favorable. The different sensitivities of these organs may alter functional relationships above- and belowground along environmental gradients. We examined the relationship between absorptive root and foliar traits of Scots pine trees growing in situ along a temperate-boreal transect and in trees grown in a long-term common garden at a temperate latitude. We related changes in foliar nitrogen, phosphorus, specific leaf area, needle mass and 13 C signatures to geographic trends in absorptive root biomass to better understand patterns of altered tree nutrition and water balance. Increased allocation to absorptive fine roots was associated with greater uptake of soil nutrients and subsequently higher needle nutrient contents in the northern provenances compared with more southern provenances when grown together in a common garden setting. In contrast, the leaf δ13 C in northern and southern provenances were similar within the common garden suggesting that higher absorptive root biomass fractions could not adequately increase water supply in warmer climates. These results highlight the importance of allocation within the fine-root system and its impacts on needle nutrition while also suggesting increasing stomatal limitation of photosynthesis in the context of anticipated climatic changes.


Subject(s)
Pinus sylvestris , Pinus , Biomass , Climate , Plant Leaves , Plant Roots , Trees
3.
Environ Sci Pollut Res Int ; 25(17): 16629-16639, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29600383

ABSTRACT

Woody plants growing along streets and construction sites play an important role in removing harmful particulate matter (PM). Researchers rarely consider the impact of different types and size fractions of PM deposited on the leaves on insect folivores. We determined differences in the accumulation of cement and roadside PM on the leaves of two Prunus species (P. padus and P. serotina) with different leaf surface structures. We also determined the effect of PM on the beetle Gonioctena quinquepunctata, the main pest of these plants. Saplings were artificially dusted in greenhouses and leaves were utilised for larval and adult insect stages feeding in laboratory conditions. Road PM accumulated in greater amounts than did cement PM, regardless of plant species. For both PM sources, P. padus accumulated twofold more than did P. serotina. Insect survival was negatively affected by PM pollution; however, neither Prunus species nor PM source variant significantly affected masses of larvae and pupae, duration of larval and pupal development or relative growth rates. The experiment showed strong negative influences of PM were noted only for adult insects, due to the grazing period being longer than that in larvae. The mass of adult insects and the efficiency of conversion of ingested food (ECI) were lower for insects exposed to PM than those for control insects. Insects compensated for lower ECI by eating a greater total amount of food (TFE). Adult insects gained significantly higher mass when fed with P. serotina than with P. padus. The effect of PM on analysed plant metabolites was insignificant. Only Prunus sp. and date of collection affected the level of condensed tannins and total phenols. Our results indicate that, when investigating the effect of the host plant on folivore performance, the accumulation of PM, as well as its type and quantity, should be taken into account.


Subject(s)
Larva/growth & development , Particulate Matter/analysis , Phenols/analysis , Plant Leaves/chemistry , Animals , Coleoptera , Eating , Insecta , Phenols/chemistry , Prunus
5.
PLoS One ; 10(12): e0144718, 2015.
Article in English | MEDLINE | ID: mdl-26657564

ABSTRACT

Body mass and sex ratio (F/M) of folivorous insects are easily measured parameters that are commonly used to assess the effect of food quality, living conditions, and preferences on the selection of favourable sites for offspring. A study was conducted on the polyphagous beetle, Gonioctenaquinquepunctata (a pest of the native Prunus padus and alien P. serotina) and on the monophagous beetle, Alticabrevicollis coryletorum (a pest of Corylus avellana). Both species have a similar life cycle with emergence of current-year adults in summer, and reproduction of 1-year-old insects in spring. A. brevicollis coryletorum feeds primarily on sunlit shrubs, while G. quinquepunctata prefers shaded leaves. The present study assessed the effect of time of occurrence(insect age) on body mass in both sexes and on the sex ratio F/M, taking into account the influence of light conditions associated with their favoured food source (sunlit vs. shaded leaves). We hypothesized that a change in body mass in current-year insects would be determined by the amount of consumed food, while the sex ratio would be stable, when in 1-year-old insects females would die shortly after oviposition, while males would be active for a prolonged time. Results confirmed the hypothesis that changes in mass of current-year beetles was determined by the amount of food intake. We also found that in spring, unfertilized females coexist with fertilized ones and that the latter females live for some time after oviposition; resulting in fluctuations of the mean mass for females. In both species, 1-year-old beetles were heavier than current-year. The preference of A. brevicollis coryletorum for sunlit leaves results in a higher body weight than in G. quinquepunctata in both seasons. The data are consistent and indicate seasonal fluctuations in body mass and changes in the sex ratio in 1-year-old beetles, due to the entrance into their reproductive period.


Subject(s)
Coleoptera/physiology , Animals , Body Weights and Measures , Coleoptera/growth & development , Diet , Female , Herbivory , Light , Male , Plant Leaves , Sex Ratio
SELECTION OF CITATIONS
SEARCH DETAIL