Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 207: 108407, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38340690

ABSTRACT

Major portion of wheat grain consist of carbohydrate, mainly starch. The proportion of amylose and amylopectin in starch greatly influence the end product quality. Advancement in understanding starch biosynthesis pathway and modulating key genes has enabled the genetic modification of crops resulting in enhanced starch quality. However, the regulation of starch biosynthesis genes still remains unexplored. So, to expand the limited knowledge, here, we characterized a Ser/Thr kinase, SnRK1α in wheat and determined its role in regulating starch biosynthesis. SnRK1 is an evolutionary conserved protein kinase and share homology to yeast SNF1. Yeast complementation assay suggests TaSnRK1α restores growth defect and promotes glycogen accumulation. Domain analysis and complementation assay with truncated domain proteins suggest the importance of ATP-binding and UBA domain in TaSnRK1α activity. Sub-cellular localization identified nuclear and cytoplasmic localization of TaSnRK1α in tobacco leaves. Further, heterologous over-expression (O/E) of TaSnRK1α in Arabidopsis not only led to increase in starch content but also enlarges the starch granules. TaSnRK1α was found to restore starch accumulation in Arabidopsis kin10. Remarkably, TaSnRK1α O/E increases the AGPase activity suggesting the direct regulation of rate limiting enzyme AGPase involved in starch biosynthesis. Furthermore, in vitro and in vivo interaction assay reveal that TaSnRK1α interacts with AGPase large sub-unit. Overall, our findings indicate that TaSnRK1α plays a role in starch biosynthesis by regulating AGPase activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Triticum/genetics , Triticum/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Glucose-1-Phosphate Adenylyltransferase/genetics , Glucose-1-Phosphate Adenylyltransferase/metabolism , Saccharomyces cerevisiae/metabolism , Starch/metabolism , Sucrose/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
2.
Plant Physiol Biochem ; 203: 108040, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37738867

ABSTRACT

Amylose, a starch subcomponent, can bind lipids within its helical groove and form an amylose-lipid complex, known as resistant starch type 5 (RS-5). RS contributes to lower glycaemic index of grain with health benefits. Unfortunately, genes involved in lipid biosynthesis in wheat grain remain elusive. Our study aims to characterize the lipid biosynthesis gene and its post-transcriptional regulation using the parent bread wheat variety 'C 306' and its EMS-induced mutant line 'TAC 75' varying in amylose content. Quantitative analyses of starch-bound lipids showed that 'TAC 75' has significantly higher lipid content in grains than 'C 306' variety. Furthermore, expression analyses revealed the higher expression of wheat phospholipid: diacylglycerol acyltransferase-like (PDAT-like) in the 'TAC 75' compared to the 'C 306'. Overexpression and ectopic expression of TaPDAT in yeast and tobacco leaf confirmed its ability to accumulate lipids in vivo. Enzyme activity assay showed that TaPDAT catalyzes the triacylglycerol synthesis by acylating 1,2-diacylglycerol. Interestingly, the long non-coding RNA, lnc663, was upregulated with the TaPDAT gene, while the miRNA, miR1128, downregulated in the 'TAC 75', indicating a regulatory relationship. The GFP reporter assay confirmed that the lnc663 acts as a positive regulator, and the miR1128 as a negative regulator of the TaPDAT gene, which controls lipid accumulation in wheat grain. Our findings outline TaPDAT-mediated biosynthesis of lipid accumulation and reveal the molecular mechanism of the lnc663 and miR1128 mediated regulation of the TaPDAT gene in wheat grain.

3.
3 Biotech ; 12(11): 295, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36276458

ABSTRACT

High amylopectin starch is an important modified starch for food processing industries. Despite a thorough understanding of starch biosynthesis pathway, the regulatory mechanism responsible for amylopectin biosynthesis is not well explored. The present study utilized transcriptome sequencing approach to understand the molecular basis of high amylopectin content in three high amylopectin mutant wheat lines ('TAC 6', 'TAC 358', and 'TAC 846') along with parent variety 'C 306'. Differential scanning calorimetry (DSC) of high amylopectin starch identified a high thermal transition temperature and scanning electron microscopy (SEM) revealed more spherical starch granules in mutant lines compared to parent variety. A set of 4455 differentially expressed genes (DEGs) were identified at two-fold compared to the parent variety in high amylopectin wheat mutants. At ten-fold, 279 genes, including two starch branching genes (SBEIIa and SBEIIb), were up-regulated and only 30 genes, including the starch debranching enzyme (DBE), were down-regulated. Among the genes, different isoforms of sucrose non-fermenting-1-related protein kinase-1 (TaSnRK1α2-3B and TaSnRK1α2-3D) and its regulatory subunit, sucrose non-fermenting-4 (SNF-4-2A, SNF-4-2B, and SNF-4-5D), were found to be highly up-regulated. Further, expression of the DEGs related to starch biosynthesis pathway and TaSnRK1α2 and SNF-4 was performed using qRT-PCR. High expression of TaSnRK1α2, SNF-4, and SBEII isoforms suggests their probable role in high amylopectin starch biosynthesis in grain endosperm. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03364-3.

4.
Plant Mol Biol ; 109(1-2): 101-113, 2022 May.
Article in English | MEDLINE | ID: mdl-35332427

ABSTRACT

KEY MESSAGE: TaPTST1, a wheat homolog of AtPTST1 containing CBM can interact with GBSSI and regulate starch metabolism in wheat endosperm. In cereal endosperm, native starch comprising amylose and amylopectin is synthesized by the coordinated activities of several pathway enzymes. Amylose in starch influences its physio-chemical properties resulting in several human health benefits. The Granule-Bound Starch Synthase I (GBSSI) is the most abundant starch-associated protein. GBSSI lacks dedicated Carbohydrate-binding module (CBM). Previously, Protein Targeting To Starch 1 (PTST1) was identified as a crucial protein for the localization of GBSSI to the starch granules in Arabidopsis. The function of its homologous protein in the wheat endosperm is not known. In this study, TaPTST1, an AtPTST1 homolog, containing a CBM and a coiled-coil domain was identified in wheat. Protein-coding nucleotide sequence of TaPTST1 from Indian wheat variety 'C 306' was cloned and characterized. Homology modelling and molecular docking suggested the potential interaction of TaPTST1 with glucans and GBSSI. The TaPTST1 expression was higher in wheat grain than the other tissues, suggesting a grain-specific function. In vitro binding assays demonstrated different binding affinities of TaPTST1 for native starch, amylose, and amylopectin. Furthermore, the immunoaffinity pull-down assay revealed that TaPTST1 directly interacts with GBSSI, and the interaction is mediated by a coiled-coil domain. The direct protein-protein interaction was further confirmed by bimolecular fluorescence complementation assay (BiFC) in planta. Based on our findings we postulate a functional role for TaPTST1 in starch metabolism by targeting GBSSI to starch granules in wheat endosperm.


Subject(s)
Arabidopsis , Starch Synthase , Amylopectin/metabolism , Amylose/metabolism , Arabidopsis/metabolism , Edible Grain/metabolism , Endosperm/metabolism , Molecular Docking Simulation , Starch/metabolism , Starch Synthase/genetics , Starch Synthase/metabolism , Triticum/metabolism
6.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-33971667

ABSTRACT

Detection of novel transcripts with deep sequencing has increased the demand for computational algorithms as their identification and validation using in vivo techniques is time-consuming, costly and unreliable. Most of these discovered transcripts belong to non-coding RNAs, a large group known for their diverse functional roles but lacks the common taxonomy. Thus, upon the identification of the absence of coding potential in them, it is crucial to recognize their prime functional category. To address this heterogeneity issue, we divide the ncRNAs into three classes and present RNA classifier (RNAC) that categorizes the RNAs into coding, housekeeping, small non-coding and long non-coding classes. RNAC utilizes the alignment-based genomic descriptors to extract statistical, local binary patterns and histogram features and fuse them to construct the classification models with extreme gradient boosting. The experiments are performed on four species, and the performance is assessed on multiclass and conventional binary classification (coding versus no-coding) problems. The proposed approach achieved >93% accuracy on both classification problems and also outperformed other well-known existing methods in coding potential prediction. This validates the usefulness of feature fusion for improved performance on both types of classification problems. Hence, RNAC is a valuable tool for the accurate identification of multiple RNAs .


Subject(s)
Algorithms , Computational Biology/methods , RNA/genetics , Animals , Genomics/methods , Humans , Machine Learning , Mice , RNA, Messenger/genetics , RNA, Untranslated/genetics , ROC Curve , Reproducibility of Results
7.
Mol Biol Rep ; 47(8): 6111-6125, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32794134

ABSTRACT

Expression of eukaryotic genes is largely regulated by non-coding RNAs (ncRNA). Sequence variations in the regulatory RNAs may have critical biological consequences including transcriptional and post-transcriptional gene regulation. ncRNA-derived markers thus can be proved useful in molecular breeding, QTL mapping and association studies for trait dissection. In present study, we identified a total of 661 SSRs dwelling in pre-miRNA (15), small nuclear RNA (25) and lncRNA (621). Of these, 46 were validated and 100% amplification success was observed in selected wheat genotypes. A set of 36 ncRNA-SSRs markers was utilized for genetic variability assessment in forty-eight Indian wheat genotypes (which includes bread wheat, durum wheat and relatives). Number of alleles ranged from 1 to 4 with an average of two alleles per SSR locus. Mean PIC, observed heterozygosity and Shannon information index were found to be 0.258, 0.37 and 0.476 which suggests ncRNA-SSRs show higher polymorphism compared to genic SSRs but lower polymorphism compared to genomic SSRs. Thirty-six ncRNA-SSRs showed transferability ranging from 42.1% to 100%. Average genetic dissimilarity among wheat genotypes was found to be 0.29 based on Jaccard's dissimilarity. This is the first report of ncRNA-SSRs in wheat which will be useful for molecular breeding and genetic improvement of wheat.


Subject(s)
Microsatellite Repeats , RNA, Plant/genetics , RNA, Untranslated/genetics , Triticum/genetics , Alleles , Cluster Analysis , DNA, Plant/genetics , Data Mining , Databases, Genetic , Genome-Wide Association Study , RNA Precursors/genetics , RNA, Long Noncoding/genetics , RNA, Small Nuclear/genetics , Species Specificity , Transcriptome
8.
Gene ; 756: 144912, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32574760

ABSTRACT

Assessment of existing diversity is the key for germplasm conservation and crop improvement. Wheat (Triticum aestivum L.) is among the most important cereal crop and consumed by two billion world's populations. DNA-based markers are predominantly used for diversity characterization because they are easy to develop and not influenced by environment. Among them microsatellites (simple sequence repeats, SSRs) are most suitable due to their genome-wide distribution, hypervariability and reproducibility for their applications in diversity, genetic improvement, and molecular breeding. bZIP transcription factors play major roles in plants in light and stress signalling, seed development, and defence. A total of 846 SSRs were identified from 370 wheat cDNA sequences and a sub-set of 35 polymorphic TabZIPMS (TriticumaestivumbZIP MicroSatellites) was used for diversity and genetic structure analysis of 92 Indian wheat varieties and related species. 114 SSR variants ranging from 2 to 5 per SSR locus were detected for 35 SSRs in the varieties. Average polymorphic information content (PIC) and observed heterozygosity was found to be 0.135 and 0.838, respectively. Thirty-four SSRs showed cross-transferability into different related species. Combined Bayesian model and Jaccard's similarity based genetic clustering analysis revealed two clusters of 80 bread wheat varieties and one separate cluster of related species. In this study, a total 35 novel bZIP-derived SSRs were identified in a set 370 bZIP genes and shown high polymorphism and cross-species transferability in wheat. The findings provide resources for future utilization in genetic resource conservation, trait introgression, breeding and varietal development.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Microsatellite Repeats , Plant Proteins/genetics , Triticum/genetics , Genetic Markers , Phylogeny , Triticum/classification
9.
Genomics ; 112(5): 3065-3074, 2020 09.
Article in English | MEDLINE | ID: mdl-32447006

ABSTRACT

Resistant starch (RS) also known as healthy starch has shown several health benefits. Enhancing the RS through genetic modification approaches has huge commercial importance. Regulatory RNA like long non-coding RNA (lncRNA) plays an important role in gene regulation. In this study, we mined 63 transcriptome datasets of wheat belonging to 35 genotypes representing two seed developmental stages. Contrasting expression of a subset of lncRNAs in RS mutant lines compared to parent wheat variety 'C 306' signifies their probable role in RS biosynthesis. Further, lncRNA- TCONS_00130663 showed strong positive correlation (r2 = 1) with LYPL gene and strong negative correlation with SBEIIb (r2 = -0.94). We found TCONS_00130663 as positive regulator of LYPL gene through interaction with miR1128. Based on relative expression, in silico interaction and DSC analysis we hypothesize the dual role of TCONS_00130663 in RS type 2 and type 5. The study provides a useful resource for functional mechanism of lncRNAs.


Subject(s)
RNA, Long Noncoding/metabolism , Resistant Starch/metabolism , Triticum/genetics , Amylose/metabolism , Computer Simulation , Gene Expression Regulation, Plant , Lipids/biosynthesis , MicroRNAs/metabolism , Mutation , RNA, Long Noncoding/chemistry , Seeds/genetics , Sequence Homology, Nucleic Acid , Triticum/embryology , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...