Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-15, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38288958

ABSTRACT

The sudden outbreak of the COVID-19 pandemic has currently taken approximately 2.4 million lives, with no specific medication and fast-tracked tested vaccines for prevention. These vaccines have their own adverse effects, which have severely affected the global healthcare system. The discovery of the main protease structure of coronavirus (Mpro/Clpro) has resulted in the identification of compounds having antiviral potential, especially from the herbal system. In this study, the computer-associated drug design tools were utilised to analyze the reported phytoconstituents of Nigella sativa for their antiviral activity against the main protease. Fifty-eight compounds were subjected to pharmacological parameter analysis to determine their lead likeness in comparison to the standard drugs (chloroquine and nirmatrelvir) used in the treatment of SARS-CoV-2. Nearly 31 compounds were docked against five different SARS-CoV-2 main proteases, and all compounds showed better binding affinity and inhibition constant against the proteases. However, dithymoquinone and campesterol displayed the best binding scores and hence were further subjected to dynamics and MMPBSA study for 100 ns. The stability analysis shows that dithymoquinone and campesterol show less variation in fluctuation in residues compared to standard complexes. Moreover, dithymoquinone exhibited higher binding affinity and favorable interaction followed by campesterol as compared to the standard drug. The in silico computational analysis provides a promising hit for regulating the main proteases activity.Communicated by Ramaswamy H. Sarma.

2.
J Infect Public Health ; 16(9): 1471-1480, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37535995

ABSTRACT

BACKGROUND: Except for a few preventative Human Papillomavirus (HPV) vaccines, there is currently no cure for HPV infection. There are a number of cutting-edge strategies and potent medications or herbal formulations that can be applied topically for early clearance of HPV infection before HPV DNA gets integrated into host cell genome. This is facilitated due to cervical cancer having distinct and well-recognized long precancerous stages. OBJECTIVES: This review aims to outline every possible medication and formulation, both natural and synthetic, that can be applied topically as intravaginal application to help remove HPV infection at an early precancerous stage. RESULTS: Several anti-HPV/HPV clearance compounds and formulations for high-grade lesions are undergoing clinical trials. However, the majority of compounds are still in the early stages of development and require additional research to become viable HPV clearance candidates. Synthetic drugs may be more promising because they may have a more targeted effect; however, they may also have significant adverse effects. On the other hand, natural medications are safer to use. They are less specific, but have minimal to no adverse effects. CONCLUSIONS: This article may serve as a valuable resource of information for managing and preventing precancerous carcinogenic HPV infections. Research could be directed toward developing candidate drugs to make evidence-based decisions about advancing them to clinical trials and, eventually, to the market for potential use in the prevention and control of cervical cancer, which is almost always preventable or even curable if detected early.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Precancerous Conditions , Synthetic Drugs , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/pathology , Papillomavirus Infections/drug therapy , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/therapeutic use , Papillomaviridae
SELECTION OF CITATIONS
SEARCH DETAIL
...