Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Yeast Res ; 21(2)2021 03 18.
Article in English | MEDLINE | ID: mdl-33493281

ABSTRACT

Scheffersomyces stipitis is a Crabtree-negative pentose fermenting yeast, which shows a complex respiratory system involving a cytochrome and an alternative salicylhydroxamic acid (SHAM)-sensitive respiration mechanism that is poorly understood. This work aimed to investigate the role of the antimycin A (AA) sensitive respiration and SHAM-sensitive respiration in the metabolism of xylose and glucose by S. stipitis, upon different agitation conditions. Inhibition of the SHAM-sensitive respiration caused a significant (P < 0.05) decrease in glycolytic flux and oxygen consumption when using glucose and xylose under agitation conditions, but without agitation, only a mild reduction was observed. The combination of SHAM and AA abolished respiration, depleting the glycolytic flux using both carbon sources tested, leading to increased ethanol production of 21.05 g/L at 250 rpm for 0.5 M glucose, and 8.3 g/L ethanol using xylose. In contrast, inhibition of only the AA-sensitive respiration, caused increased ethanol production to 30 g/L using 0.5 M glucose at 250 rpm, and 11.3 g/L from 0.5 M xylose without agitation. Results showed that ethanol production can be induced by respiration inhibition, but the active role of SHAM-sensitive respiration should be considered to investigate better conditions to increase and optimize yields.


Subject(s)
Ethanol/analysis , Fermentation , Glucose/metabolism , Oxygen Consumption , Saccharomycetales/metabolism , Xylose/metabolism , Antifungal Agents/pharmacology , Antimycin A/pharmacology , Ethanol/metabolism , Saccharomycetales/drug effects
2.
FEMS Yeast Res ; 19(2)2019 03 01.
Article in English | MEDLINE | ID: mdl-30500899

ABSTRACT

Scheffersomyces stipitis shows a high capacity to ferment xylose, with a strong oxygen dependence to allow NAD+ regeneration. However, without oxygen regeneration of NADH occurs by other metabolic pathways like alcoholic fermentation. There are few reports about inhibitors of mitochondrial respiration and their effects on growth and fermentation. This work aimed to explore the effect of cytochrome bc1 complex inhibition by antimycin A (AA), on growth and fermentation of S. stipitis using glucose, xylose and arabinose as carbon sources, at three agitation levels (0, 125 and 250 rpm). It was possible to discriminate between respiratory and fermentative metabolism in these different conditions using xylose or arabinose. Despite the inhibition of mitochondrial respiration, the glycolytic flux was active because S. stipitis metabolized glucose or xylose to produce ATP; on 0.5 M glucose the cells yielded 17-33 g L-1 ethanol. However, more complex results were obtained on xylose, which depended upon agitation conditions where ethanol production without agitation increased up to 11 g L-1. Inhibition of respiratory chain in S. stipitis could therefore be a good strategy to improve ethanol yields.


Subject(s)
Arabinose/metabolism , Carbon/metabolism , Electron Transport Complex III/antagonists & inhibitors , Glucose/metabolism , Saccharomycetales/growth & development , Saccharomycetales/metabolism , Xylose/metabolism , Antimycin A/metabolism , Enzyme Inhibitors/metabolism , Ethanol/metabolism , Fermentation/drug effects , Glycolysis , Metabolic Flux Analysis , Oxidation-Reduction , Saccharomycetales/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...