Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Lancet Digit Health ; 4(9): e632-e645, 2022 09.
Article in English | MEDLINE | ID: mdl-35835712

ABSTRACT

BACKGROUND: COVID-19 is a multi-system disorder with high variability in clinical outcomes among patients who are admitted to hospital. Although some cytokines such as interleukin (IL)-6 are believed to be associated with severity, there are no early biomarkers that can reliably predict patients who are more likely to have adverse outcomes. Thus, it is crucial to discover predictive markers of serious complications. METHODS: In this retrospective cohort study, we analysed samples from 455 participants with COVID-19 who had had a positive SARS-CoV-2 RT-PCR result between April 14, 2020, and Dec 1, 2020 and who had visited one of three Mayo Clinic sites in the USA (Minnesota, Arizona, or Florida) in the same period. These participants were assigned to three subgroups depending on disease severity as defined by the WHO ordinal scale of clinical improvement (outpatient, severe, or critical). Our control cohort comprised of 182 anonymised age-matched and sex-matched plasma samples that were available from the Mayo Clinic Biorepository and banked before the COVID-19 pandemic. We did a deep profiling of circulatory cytokines and other proteins, lipids, and metabolites from both cohorts. Most patient samples were collected before, or around the time of, hospital admission, representing ideal samples for predictive biomarker discovery. We used proximity extension assays to quantify cytokines and circulatory proteins and tandem mass spectrometry to measure lipids and metabolites. Biomarker discovery was done by applying an AutoGluon-tabular classifier to a multiomics dataset, producing a stacked ensemble of cutting-edge machine learning algorithms. Global proteomics and glycoproteomics on a subset of patient samples with matched pre-COVID-19 plasma samples was also done. FINDINGS: We quantified 1463 cytokines and circulatory proteins, along with 902 lipids and 1018 metabolites. By developing a machine-learning-based prediction model, a set of 102 biomarkers, which predicted severe and clinical COVID-19 outcomes better than the traditional set of cytokines, were discovered. These predictive biomarkers included several novel cytokines and other proteins, lipids, and metabolites. For example, altered amounts of C-type lectin domain family 6 member A (CLEC6A), ether phosphatidylethanolamine (P-18:1/18:1), and 2-hydroxydecanoate, as reported here, have not previously been associated with severity in COVID-19. Patient samples with matched pre-COVID-19 plasma samples showed similar trends in muti-omics signatures along with differences in glycoproteomics profile. INTERPRETATION: A multiomic molecular signature in the plasma of patients with COVID-19 before being admitted to hospital can be exploited to predict a more severe course of disease. Machine learning approaches can be applied to highly complex and multidimensional profiling data to reveal novel signatures of clinical use. The absence of validation in an independent cohort remains a major limitation of the study. FUNDING: Eric and Wendy Schmidt.


Subject(s)
COVID-19 , Biomarkers , COVID-19/diagnosis , Cohort Studies , Cytokines , Humans , Lipidomics/methods , Lipids , Metabolomics/methods , Pandemics , Prognosis , Proteomics/methods , Retrospective Studies , SARS-CoV-2
2.
J Proteome Res ; 21(8): 2045-2054, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35849720

ABSTRACT

Targeted mass spectrometry-based platforms have become a valuable tool for the sensitive and specific detection of protein biomarkers in clinical and research settings. Traditionally, developing a targeted assay for peptide quantification has involved manually preselecting several fragment ions and establishing a limit of detection (LOD) and a lower limit of quantitation (LLOQ) for confident detection of the target. Established thresholds such as LOD and LLOQ, however, inherently sacrifice sensitivity to afford specificity. Here, we demonstrate that machine learning can be applied to qualitative PRM assays to discriminate positive from negative samples more effectively than a traditional approach utilizing conventional methods. To demonstrate the utility of this method, we trained an ensemble machine learning model using 282 SARS-CoV-2 positive and 994 SARS-CoV-2 negative nasopharyngeal swabs (NP swab) analyzed using a targeted PRM method. This model was then validated using an independent set of 200 positive and 150 negative samples and achieved a sensitivity of 92% relative to results obtained by RT-PCR, which was superior to a traditional approach that resulted in 86.5% sensitivity when analyzing the same data. These results demonstrate that machine learning can be applied to qualitative PRM assays and results in superior performance relative to traditional methods.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Machine Learning , Mass Spectrometry/methods , Sensitivity and Specificity
4.
J Proteome Res ; 21(1): 142-150, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34779632

ABSTRACT

COVID-19 vaccines are becoming more widely available, but accurate and rapid testing remains a crucial tool for slowing the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus. Although the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) remains the most prevalent testing methodology, numerous tests have been developed that are predicated on detection of the SARS-CoV-2 nucleocapsid protein, including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay-based approaches. The continuing emergence of SARS-CoV-2 variants has complicated these approaches, as both qRT-PCR and antigen detection methods can be prone to missing viral variants. In this study, we describe several COVID-19 cases where we were unable to detect the expected peptide targets from clinical nasopharyngeal swabs. Whole genome sequencing revealed that single nucleotide polymorphisms in the gene encoding the viral nucleocapsid protein led to sequence variants that were not monitored in the targeted assay. Minor modifications to the LC-MS/MS method ensured detection of the variants of the target peptide. Additional nucleocapsid variants could be detected by performing the bottom-up proteomic analysis of whole viral genome-sequenced samples. This study demonstrates the importance of considering variants of SARS-CoV-2 in the assay design and highlights the flexibility of mass spectrometry-based approaches to detect variants as they evolve.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Chromatography, Liquid , Humans , Nucleocapsid/genetics , Peptides , Proteomics , Tandem Mass Spectrometry
5.
Cancers (Basel) ; 13(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34885041

ABSTRACT

Gastric cancer is a leading cause of death from cancer globally. Gastric cancer is classified into intestinal, diffuse and indeterminate subtypes based on histology according to the Laurén classification. The intestinal and diffuse subtypes, although different in histology, demographics and outcomes, are still treated in the same fashion. This study was designed to discover proteomic signatures of diffuse and intestinal subtypes. Mass spectrometry-based proteomics using tandem mass tags (TMT)-based multiplexed analysis was used to identify proteins in tumor tissues from patients with diffuse or intestinal gastric cancer with adjacent normal tissue control. A total of 7448 or 4846 proteins were identified from intestinal or diffuse subtype, respectively. This quantitative mass spectrometric analysis defined a proteomic signature of differential expression across the two subtypes, which included gremlin1 (GREM1), bcl-2-associated athanogene 2 (BAG2), olfactomedin 4 (OLFM4), thyroid hormone receptor interacting protein 6 (TRIP6) and melanoma-associated antigen 9 (MAGE-A9) proteins. Although GREM1, BAG2, OLFM4, TRIP6 and MAGE-A9 have all been previously implicated in tumor progression and metastasis, they have not been linked to intestinal or diffuse subtypes of gastric cancer. Using immunohistochemical labelling of a tissue microarray comprising of 124 cases of gastric cancer, we validated the proteomic signature obtained by mass spectrometry in the discovery cohort. Our findings should help investigate the pathogenesis of these gastric cancer subtypes and potentially lead to strategies for early diagnosis and treatment.

6.
J Mass Spectrom Adv Clin Lab ; 22: 43-49, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34939054

ABSTRACT

Lipidomics is an important component of most multi-Omics systems biology studies and is largely driven by mass spectrometry (MS). Because lipids are tight regulators of multiple cellular functions, including energy homeostasis, membrane structures and cell signaling, lipidomics can provide a deeper understanding of variations underlying disease states and can become an even more powerful platform when combined with other omics, including genomics or proteomics. However, data analysis, especially in lipid annotation, poses challenges due to the heterogeneity of functional head groups and fatty acyl chains of varying hydrocarbon lengths and degrees of unsaturation. As there are various MS/MS fragmentation sites in lipids that are class-dependent, obtaining MS/MS data that includes as many fragment ions as possible is critical for structural characterization of lipids in lipidomics workflow. Here, we report an improved lipidomics methodology that resulted in increased coverage of lipidome using: 1) An automated data-driven MS/MS acquisition scheme in which inclusion and exclusion lists were automatically generated from the full scan MS of sample injections, followed by creation of updated lists over iterative analyses; and, 2) Incorporation of dual dissociation techniques of higher-energy collision dissociation and collision-induced dissociation for more accurate characterization of phosphatidylcholine species. Inclusion lists were created automatically based on full scan MS signals from samples and through iterative analyses, ions in the inclusion list that were fragmented were automatically moved to the exclusion list in subsequent runs. We confirmed that analytes with low MS response that did not undergo MS/MS events in conventional data-dependent analysis were successfully fragmented using this approach. Overall, this automated data-driven data acquisition approach resulted in a higher coverage of lipidome and the use of dual dissociation techniques provided additional information that was critical in characterizing the side chains of phosphatidylcholine species.

7.
Clin Proteomics ; 18(1): 25, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34686148

ABSTRACT

SARS-CoV-2, a novel human coronavirus, has created a global disease burden infecting > 100 million humans in just over a year. RT-PCR is currently the predominant method of diagnosing this viral infection although a variety of tests to detect viral antigens have also been developed. In this study, we adopted a SISCAPA-based enrichment approach using anti-peptide antibodies generated against peptides from the nucleocapsid protein of SARS-CoV-2. We developed a targeted workflow in which nasopharyngeal swab samples were digested followed by enrichment of viral peptides using the anti-peptide antibodies and targeted parallel reaction monitoring (PRM) analysis using a high-resolution mass spectrometer. This workflow was applied to 41 RT-PCR-confirmed clinical SARS-CoV-2 positive nasopharyngeal swab samples and 30 negative samples. The workflow employed was highly specific as none of the target peptides were detected in negative samples. Further, the detected peptides showed a positive correlation with the viral loads as measured by RT-PCR Ct values. The SISCAPA-based platform described in the current study can serve as an alternative method for SARS-CoV-2 viral detection and can also be applied for detecting other microbial pathogens directly from clinical samples.

8.
Mol Omics ; 17(6): 956-966, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34519752

ABSTRACT

To discover lipidomic alterations during pregnancy in mothers who subsequently delivered small for gestational age (SGA) neonates and identify predictive lipid markers that can help recognize and manage these mothers, we carried out untargeted lipidomics on maternal serum samples collected between 24-28 weeks of gestation. We used a nested case-control study design and serum from mothers who delivered SGA and appropriate for gestational age babies. We applied untargeted lipidomics using mass spectrometry to characterize lipids and discover changes associated with SGA births during pregnancy. Multivariate pattern recognition software Collaborative Laboratory Integrated Reports (CLIR) was used for the post-analytical recognition of range differences in lipid ratios that could differentiate between SGA and control mothers and their integration for complete separation between the two groups. Here, we report changes in lipids from serum collected during pregnancy in mothers who delivered SGA neonates. In contrast to normal pregnancies where lysophosphatidic acid increased over the course of the pregnancy owing to increased activity of lysophospholipase D, we observed a decrease (32%; P = 0.05) of 20:4-lysophosphatidic acid in SGA mothers, which could potentially compromise fetal growth and development. Integration of lipid ratios in an interpretive tool (CLIR) could completely separate SGA mothers from controls demonstrating the power of untargeted lipidomic analyses for identifying novel predictive biomarkers. Additional studies are required for further assessment of the lipid biomarkers identified in this report.


Subject(s)
Infant, Small for Gestational Age , Lipidomics , Case-Control Studies , Female , Gestational Age , Humans , Infant , Infant, Newborn , Lysophospholipids , Pregnancy
9.
Mol Cell Proteomics ; 20: 100134, 2021.
Article in English | MEDLINE | ID: mdl-34400346

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a global health pandemic. COVID-19 severity ranges from an asymptomatic infection to a severe multiorgan disease. Although the inflammatory response has been implicated in the pathogenesis of COVID-19, the exact nature of dysregulation in signaling pathways has not yet been elucidated, underscoring the need for further molecular characterization of SARS-CoV-2 infection in humans. Here, we characterize the host response directly at the point of viral entry through analysis of nasopharyngeal swabs. Multiplexed high-resolution MS-based proteomic analysis of confirmed COVID-19 cases and negative controls identified 7582 proteins and revealed significant upregulation of interferon-mediated antiviral signaling in addition to multiple other proteins that are not encoded by interferon-stimulated genes or well characterized during viral infections. Downregulation of several proteasomal subunits, E3 ubiquitin ligases, and components of protein synthesis machinery was significant upon SARS-CoV-2 infection. Targeted proteomics to measure abundance levels of MX1, ISG15, STAT1, RIG-I, and CXCL10 detected proteomic signatures of interferon-mediated antiviral signaling that differentiated COVID-19-positive from COVID-19-negative cases. Phosphoproteomic analysis revealed increased phosphorylation of several proteins with known antiviral properties as well as several proteins involved in ciliary function (CEP131 and CFAP57) that have not previously been implicated in the context of coronavirus infections. In addition, decreased phosphorylation levels of AKT and PKC, which have been shown to play varying roles in different viral infections, were observed in infected individuals relative to controls. These data provide novel insights that add depth to our understanding of SARS-CoV-2 infection in the upper airway and establish a proteomic signature for this viral infection.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions/physiology , Nasopharynx/virology , Proteome/analysis , COVID-19/immunology , COVID-19/virology , Chromatography, Liquid , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Interferons/immunology , Interferons/metabolism , Phosphoproteins/analysis , Phosphoproteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Kinase C/metabolism , Proteome/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Opioid/metabolism , Signal Transduction , Tandem Mass Spectrometry , Ubiquitin/metabolism
10.
Cancers (Basel) ; 13(16)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34439388

ABSTRACT

Overexpression and amplification of AXL receptor tyrosine kinase (RTK) has been found in several hematologic and solid malignancies. Activation of AXL can enhance tumor-promoting processes such as cancer cell proliferation, migration, invasion and survival. Despite the important role of AXL in cancer development, a deep and quantitative mapping of its temporal dynamic signaling transduction has not yet been reported. Here, we used a TMT labeling-based quantitative proteomics approach to characterize the temporal dynamics of the phosphotyrosine proteome induced by AXL activation. We identified >1100 phosphotyrosine sites and observed a widespread upregulation of tyrosine phosphorylation induced by GAS6 stimulation. We also detected several tyrosine sites whose phosphorylation levels were reduced upon AXL activation. Gene set enrichment-based pathway analysis indicated the activation of several cancer-promoting and cell migration/invasion-related signaling pathways, including RAS, EGFR, focal adhesion, VEGFR and cytoskeletal rearrangement pathways. We also observed a rapid induction of phosphorylation of protein tyrosine phosphatases, including PTPN11 and PTPRA, upon GAS6 stimulation. The novel molecules downstream of AXL identified in this study along with the detailed global quantitative map elucidating the temporal dynamics of AXL activation should not only help understand the oncogenic role of AXL, but also aid in developing therapeutic options to effectively target AXL.

11.
J Proteome Res ; 20(9): 4566-4577, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34428048

ABSTRACT

Nonreceptor tyrosine kinases (NRTKs) represent an important class of signaling molecules driving diverse cellular pathways. Aberrant expression and hyperphosphorylation of TNK2, an NRTK, have been implicated in multiple cancers. However, the exact proteins and cellular events that mediate phenotypic changes downstream of TNK2 are unclear. Biological systems that employ proximity-dependent biotinylation methods, such as BioID, are being increasingly used to map protein-protein interactions, as they provide increased sensitivity in discovering interaction partners. In this study, we employed stable isotope labeling with amino acids in cell culture and BioID coupled to the biotinylation site identification technology (BioSITe) method that we recently developed to quantitatively explore the interactome of TNK2. By performing a controlled comparative analysis between full-length TNK2 and its truncated counterpart, we were able to not only identify site-level biotinylation of previously well-established TNK2 binders and substrates including NCK1, NCK2, CTTN, and STAT3, but also discover several novel TNK2 interacting partners. We also performed co-immunoprecipitation and immunofluorescence analysis to validate the interaction between TNK2 and CLINT1, a novel TNK2 interacting protein. Overall, this work reveals the power of the BioSITe method coupled to BioID and highlights several molecules that warrant further exploration to assess their functional significance in TNK2-mediated signaling.


Subject(s)
Protein-Tyrosine Kinases , Signal Transduction , Biotinylation , Protein Binding , Protein-Tyrosine Kinases/genetics
12.
Mayo Clin Proc ; 96(10): 2561-2575, 2021 10.
Article in English | MEDLINE | ID: mdl-34425963

ABSTRACT

OBJECTIVE: To compare coronavirus disease 2019 (COVID-19) acute kidney injury (AKI) to sepsis-AKI (S-AKI). The morphology and transcriptomic and proteomic characteristics of autopsy kidneys were analyzed. PATIENTS AND METHODS: Individuals 18 years of age and older who died from COVID-19 and had an autopsy performed at Mayo Clinic between April 2020 to October 2020 were included. Morphological evaluation of the kidneys of 17 individuals with COVID-19 was performed. In a subset of seven COVID-19 cases with postmortem interval of less than or equal to 20 hours, ultrastructural and molecular characteristics (targeted transcriptome and proteomics analyses of tubulointerstitium) were evaluated. Molecular characteristics were compared with archived cases of S-AKI and nonsepsis causes of AKI. RESULTS: The spectrum of COVID-19 renal pathology included macrophage-dominant microvascular inflammation (glomerulitis and peritubular capillaritis), vascular dysfunction (peritubular capillary congestion and endothelial injury), and tubular injury with ultrastructural evidence of mitochondrial damage. Investigation of the spatial architecture using a novel imaging mass cytometry revealed enrichment of CD3+CD4+ T cells in close proximity to antigen-presenting cells, and macrophage-enriched glomerular and interstitial infiltrates, suggesting an innate and adaptive immune tissue response. Coronavirus disease 2019 AKI and S-AKI, as compared to nonseptic AKI, had an enrichment of transcriptional pathways involved in inflammation (apoptosis, autophagy, major histocompatibility complex class I and II, and type 1 T helper cell differentiation). Proteomic pathway analysis showed that COVID-19 AKI and to a lesser extent S-AKI were enriched in necroptosis and sirtuin-signaling pathways, both involved in regulatory response to inflammation. Upregulation of the ceramide-signaling pathway and downregulation of oxidative phosphorylation in COVID-19 AKI were noted. CONCLUSION: This data highlights the similarities between S-AKI and COVID-19 AKI and suggests that mitochondrial dysfunction may play a pivotal role in COVID-19 AKI. This data may allow the development of novel diagnostic and therapeutic targets.


Subject(s)
Acute Kidney Injury/pathology , COVID-19/pathology , Kidney/pathology , Sepsis/pathology , Acute Kidney Injury/virology , Adult , Autopsy , Humans , Kidney Tubules, Proximal/pathology , Male , Middle Aged , Sepsis/virology
13.
EBioMedicine ; 69: 103465, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34229274

ABSTRACT

BACKGROUND: The COVID-19 pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has overwhelmed health systems worldwide and highlighted limitations of diagnostic testing. Several types of diagnostic tests including RT-PCR-based assays and antigen detection by lateral flow assays, each with their own strengths and weaknesses, have been developed and deployed in a short time. METHODS: Here, we describe an immunoaffinity purification approach followed a by high resolution mass spectrometry-based targeted qualitative assay capable of detecting SARS-CoV-2 viral antigen from nasopharyngeal swab samples. Based on our discovery experiments using purified virus, recombinant viral protein and nasopharyngeal swab samples from COVID-19 positive patients, nucleocapsid protein was selected as a target antigen. We then developed an automated antibody capture-based workflow coupled to targeted high-field asymmetric waveform ion mobility spectrometry (FAIMS) - parallel reaction monitoring (PRM) assay on an Orbitrap Exploris 480 mass spectrometer. An ensemble machine learning-based model for determining COVID-19 positive samples was developed using fragment ion intensities from the PRM data. FINDINGS: The optimized targeted assay, which was used to analyze 88 positive and 88 negative nasopharyngeal swab samples for validation, resulted in 98% (95% CI = 0.922-0.997) (86/88) sensitivity and 100% (95% CI = 0.958-1.000) (88/88) specificity using RT-PCR-based molecular testing as the reference method. INTERPRETATION: Our results demonstrate that direct detection of infectious agents from clinical samples by tandem mass spectrometry-based assays have potential to be deployed as diagnostic assays in clinical laboratories, which has hitherto been limited to analysis of pure microbial cultures. FUNDING: This study was supported by DBT/Wellcome Trust India Alliance Margdarshi Fellowship grant IA/M/15/1/502023 awarded to AP and the generosity of Eric and Wendy Schmidt.


Subject(s)
COVID-19 Serological Testing/methods , Immunoassay/methods , Mass Spectrometry/methods , Animals , Antigens, Viral/chemistry , Antigens, Viral/immunology , Automation, Laboratory/methods , Automation, Laboratory/standards , COVID-19 Serological Testing/standards , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunoassay/standards , Machine Learning , Mass Spectrometry/standards , Phosphoproteins/chemistry , Phosphoproteins/immunology , Sensitivity and Specificity
14.
Mitochondrion ; 60: 27-32, 2021 09.
Article in English | MEDLINE | ID: mdl-34273557

ABSTRACT

Barth syndrome is an X-linked recessive disorder caused by pathogenic variants in TAZ, which leads to a reduction in cardiolipin with a concomitant elevation of monolysocardiolipins. There is a paucity of studies characterizing changes in individual species of monolysocardiolipins, dilysocardiolipins and cardiolipin in Barth syndrome using high resolution untargeted lipidomics that can accurately annotate and quantify diverse lipids. We confirmed the structural diversity monolysocardiolipins, dilysocardiolipins and cardiolipin and identified individual species that showed previously unreported alterations in BTHS. Development of mass spectrometry-based targeted assays for these lipid biomarkers should provide an important tool for clinical diagnosis of Barth syndrome.


Subject(s)
Barth Syndrome/blood , Cardiolipins/blood , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Adolescent , Cardiolipins/chemistry , Cardiolipins/classification , Cell Line , Child , Humans , Male
15.
Clin Chem ; 67(11): 1545-1553, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34240163

ABSTRACT

BACKGROUND: We evaluated the analytical sensitivity and specificity of 4 rapid antigen diagnostic tests (Ag RDTs) for severe acute respiratory syndrome coronavirus 2, using reverse transcription quantitative PCR (RT-qPCR) as the reference method and further characterizing samples using droplet digital quantitative PCR (ddPCR) and a mass spectrometric antigen test. METHODS: Three hundred fifty (150 negative and 200 RT-qPCR positive) residual PBS samples were tested for antigen using the BD Veritor lateral flow (LF), ACON LF, ACON fluorescence immunoassay (FIA), and LumiraDx FIA. ddPCR was performed on RT-qPCR-positive samples to quantitate the viral load in copies/mL applied to each Ag RDT. Mass spectrometric antigen testing was performed on PBS samples to obtain a set of RT-qPCR-positive, antigen-positive samples for further analysis. RESULTS: All Ag RDTs had nearly 100% specificity compared to RT-qPCR. Overall analytical sensitivity varied from 66.5% to 88.3%. All methods detected antigen in samples with viral load >1 500 000 copies/mL RNA, and detected ≥75% of samples with viral load of 500 000 to 1 500 000 copies/mL. The BD Veritor LF detected only 25% of samples with viral load between 50 000 to 500 000 copies/mL, compared to 75% for the ACON LF device and >80% for LumiraDx and ACON FIA. The ACON FIA detected significantly more samples with viral load <50 000 copies/mL compared to the BD Veritor. Among samples with detectable antigen and viral load <50 000 copies/mL, sensitivity of the Ag RDT varied between 13.0% (BD Veritor) and 78.3% (ACON FIA). CONCLUSIONS: Ag RDTs differ significantly in analytical sensitivity, particularly at viral load <500 000 copies/mL.


Subject(s)
Antigens, Viral/analysis , COVID-19 Testing/methods , Point-of-Care Testing , Humans , Mass Spectrometry , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/immunology , Sensitivity and Specificity , Viral Load
16.
J Proteome Res ; 20(8): 4165-4175, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34292740

ABSTRACT

Since the recent outbreak of COVID-19, there have been intense efforts to understand viral pathogenesis and host immune response to combat SARS-CoV-2. It has become evident that different host alterations can be identified in SARS-CoV-2 infection based on whether infected cells, animal models or clinical samples are studied. Although nasopharyngeal swabs are routinely collected for SARS-CoV-2 detection by RT-PCR testing, host alterations in the nasopharynx at the proteomic level have not been systematically investigated. Thus, we sought to characterize the host response through global proteome profiling of nasopharyngeal swab specimens. A mass spectrometer combining trapped ion mobility spectrometry (TIMS) and high-resolution QTOF mass spectrometer with parallel accumulation-serial fragmentation (PASEF) was deployed for unbiased proteome profiling. First, deep proteome profiling of pooled nasopharyngeal swab samples was performed in the PASEF enabled DDA mode, which identified 7723 proteins that were then used to generate a spectral library. This approach provided peptide level evidence of five missing proteins for which MS/MS spectrum and mobilograms were validated with synthetic peptides. Subsequently, quantitative proteomic profiling was carried out for 90 individual nasopharyngeal swab samples (45 positive and 45 negative) in DIA combined with PASEF, termed as diaPASEF mode, which resulted in a total of 5023 protein identifications. Of these, 577 proteins were found to be upregulated in SARS-CoV-2 positive samples. Functional analysis of these upregulated proteins revealed alterations in several biological processes including innate immune response, viral protein assembly, and exocytosis. To the best of our knowledge, this study is the first to deploy diaPASEF for quantitative proteomic profiling of clinical samples and shows the feasibility of adopting such an approach to understand mechanisms and pathways altered in diseases.


Subject(s)
COVID-19 , Proteome , Humans , Nasopharynx , Proteomics , SARS-CoV-2 , Specimen Handling , Tandem Mass Spectrometry
17.
Cancers (Basel) ; 13(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34298619

ABSTRACT

Pancreatic ductal adenocarcinoma is a recalcitrant tumor with minimal response to conventional chemotherapeutic approaches. Oncogenic signaling by activated tyrosine kinases has been implicated in cancers resulting in activation of diverse effector signaling pathways. Thus, the discovery of aberrantly activated tyrosine kinases is of great interest in developing novel therapeutic strategies in the treatment and management of pancreatic cancer. Patient-derived tumor xenografts (PDXs) in mice serve as potentially valuable preclinical models as they maintain the histological and molecular heterogeneity of the original human tumor. Here, we employed high-resolution mass spectrometry combined with immunoaffinity purification using anti-phosphotyrosine antibodies to profile tyrosine phosphoproteome across 13 pancreatic ductal adenocarcinoma PDX models. This analysis resulted in the identification of 1199 tyrosine-phosphorylated sites mapping to 704 proteins. The mass spectrometric analysis revealed widespread and heterogeneous activation of both receptor and non-receptor tyrosine kinases. Preclinical studies confirmed ephrin type-B receptor 4 (EphB4) as a potential therapeutic target based on the efficacy of human serum albumin-conjugated soluble EphB4 in mice bearing orthotopic xenografts. Immunohistochemistry-based validation using tissue microarrays from 346 patients with PDAC showed significant expression of EphB4 in >70% of patients. In summary, we present a comprehensive landscape of tyrosine phosphoproteome with EphB4 as a promising therapeutic target in pancreatic ductal adenocarcinoma.

18.
Mol Omics ; 17(3): 454-463, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34125126

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia and is associated with serious neurologic sequelae resulting from neurodegenerative changes. Identification of markers of early-stage AD could be important for designing strategies to arrest the progression of the disease. The brain is rich in lipids because they are crucial for signal transduction and anchoring of membrane proteins. Cerebrospinal fluid (CSF) is an excellent specimen for studying the metabolism of lipids in AD because it can reflect changes occurring in the brain. We aimed to identify CSF lipidomic alterations associated with AD, using untargeted lipidomics, carried out in positive and negative ion modes. We found CSF lipids that were significantly altered in AD cases. In addition, comparison of CSF lipid profiles between persons with mild cognitive impairment (MCI) and AD showed a strong positive correlation between the lipidomes of the MCI and AD groups. The novel lipid biomarkers identified in this study are excellent candidates for validation in a larger set of patient samples and as predictive biomarkers of AD through future longitudinal studies. Once validated, the lipid biomarkers could lead to early detection, disease monitoring and the ability to measure the efficacy of potential therapeutic interventions in AD.


Subject(s)
Alzheimer Disease/metabolism , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/metabolism , Lipidomics/methods , Lipids/cerebrospinal fluid , Aged , Aged, 80 and over , Alzheimer Disease/cerebrospinal fluid , Case-Control Studies , Chromatography, High Pressure Liquid , Cognitive Dysfunction/cerebrospinal fluid , Female , Humans , Male , Middle Aged , Tandem Mass Spectrometry
19.
Life Sci Alliance ; 4(5)2021 05.
Article in English | MEDLINE | ID: mdl-33758005

ABSTRACT

The nuclear lamina is a proteinaceous network of filaments that provide both structural and gene regulatory functions by tethering proteins and large domains of DNA, the so-called lamina-associated domains (LADs), to the periphery of the nucleus. LADs are a large fraction of the mammalian genome that are repressed, in part, by their association to the nuclear periphery. The genesis and maintenance of LADs is poorly understood as are the proteins that participate in these functions. In an effort to identify proteins that reside at the nuclear periphery and potentially interact with LADs, we have taken a two-pronged approach. First, we have undertaken an interactome analysis of the inner nuclear membrane bound LAP2ß to further characterize the nuclear lamina proteome. To accomplish this, we have leveraged the BioID system, which previously has been successfully used to characterize the nuclear lamina proteome. Second, we have established a system to identify proteins that bind to LADs by developing a chromatin-directed BioID system. We combined the BioID system with the m6A-tracer system which binds to LADs in live cells to identify both LAD proximal and nuclear lamina proteins. In combining these datasets, we have further characterized the protein network at the nuclear lamina, identified putative LAD proximal proteins and found several proteins that appear to interface with both micro-proteomes. Importantly, several proteins essential for LAD function, including heterochromatin regulating proteins related to H3K9 methylation, were identified in this study.


Subject(s)
Nuclear Lamina/metabolism , Proteome/metabolism , Animals , Cell Line , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatin/metabolism , DNA/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Genome , Heterochromatin/metabolism , Humans , Membrane Proteins/metabolism , Membrane Proteins/physiology , Mice , NIH 3T3 Cells , Nuclear Lamina/genetics , Nuclear Lamina/pathology , Nuclear Proteins/genetics , Protein Binding/physiology , Protein Domains/physiology , Proteome/genetics , Proteomics/methods
20.
Mol Cell Proteomics ; 20: 100069, 2021.
Article in English | MEDLINE | ID: mdl-33716169

ABSTRACT

The dynamic modification of specific serine and threonine residues of intracellular proteins by O-linked N-acetyl-ß-D-glucosamine (O-GlcNAc) mitigates injury and promotes cytoprotection in a variety of stress models. The O-GlcNAc transferase (OGT) and the O-GlcNAcase are the sole enzymes that add and remove O-GlcNAc, respectively, from thousands of substrates. It remains unclear how just two enzymes can be specifically controlled to affect glycosylation of target proteins and signaling pathways both basally and in response to stress. Several lines of evidence suggest that protein interactors regulate these responses by affecting OGT and O-GlcNAcase activity, localization, and substrate specificity. To provide insight into the mechanisms by which OGT function is controlled, we have used quantitative proteomics to define OGT's basal and stress-induced interactomes. OGT and its interaction partners were immunoprecipitated from OGT WT, null, and hydrogen peroxide-treated cell lysates that had been isotopically labeled with light, medium, and heavy lysine and arginine (stable isotopic labeling of amino acids in cell culture). In total, more than 130 proteins were found to interact with OGT, many of which change their association upon hydrogen peroxide stress. These proteins include the major OGT cleavage and glycosylation substrate, host cell factor 1, which demonstrated a time-dependent dissociation after stress. To validate less well-characterized interactors, such as glyceraldehyde 3-phosphate dehydrogenase and histone deacetylase 1, we turned to parallel reaction monitoring, which recapitulated our discovery-based stable isotopic labeling of amino acids in cell culture approach. Although the majority of proteins identified are novel OGT interactors, 64% of them are previously characterized glycosylation targets that contain varied domain architecture and function. Together these data demonstrate that OGT interacts with unique and specific interactors in a stress-responsive manner.


Subject(s)
N-Acetylglucosaminyltransferases/metabolism , Oxidative Stress , Animals , Cells, Cultured , Fibroblasts/metabolism , Mice , N-Acetylglucosaminyltransferases/genetics , Protein Interaction Maps , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...