Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652902

ABSTRACT

Nanoparticles of tungsten oxide (WO3) and zinc oxide (ZnO) enriched polyethylene sebacate (PES) nanocomposites were prepared through the coprecipitation process and condensation polymerization reaction. The obtained nano-sized particles of WO3 and ZnO, PES, and nanocomposites (WO3-PES NC and ZnO-PES NC) were investigated. The average molecular weight of the cured PES was measured by employing the gel permeation chromatography (GPC) technique. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) spectra assured the formation of the polymeric nanocomposites.WO3 and ZnO nanoparticles supposed a condensed porous spherical phase found implanted in the polymer structure, as detected by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. These nano-scale systems achieved an electrical activity based on the conductive nanoparticles embedded matrix as a result of the ion-ion interactions. The microbial influence of the nanocomposites was examined against pathogenic bacteria; Pseudomonas aeruginosa,Escherichia coli, Staphylococcus aureus, and Bacillus subtilis, and Fungi; Aspergillus niger, and Candidaalbicans. Results exhibited that these nanocomposites have antimicrobial effects from moderate to slightly high on bacteria and high on fungi which was confirmed by a clear zone of inhibition. This study contributes to the design of reasonable composites to be under evaluation for their catalytic effect.

2.
J Environ Manage ; 258: 110043, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31929075

ABSTRACT

Two types of chitosan-based composites (chitosan/ZnO and chitosan/Ce-ZnO composites) were synthesized under microwave irradiation and characterized as advanced catalysts of enhanced photocatalytic activity under the visible light. The morphological investigation reflected the formation of ZnO and Ce doped ZnO at stunning micro flowers of nano limps. Additionally, the optical studies reflected a reduction in the bandgap of ZnO from 3.3 eV to 2.85 eV and 2.5 eV after supporting it onto chitosan chains and after doping it with cerium, respectively. The synthetic composites were applied in photocatalytic removal of malachite green dye under a visible light source. The synthetic CH/ZnO and CH/Ce-ZnO showed enhancement in the photocatalytic removal of M.G by 54% and 87%, respectively, as compared to the pure ZnO. The synthetic composites are of high stability and can be reused for five photocatalytic degradation cycles at stunning removal percentages. The main oxidizing radicals during the removal of M.G by CH/ZnO are the generated electron-hole pairs as well as the hydroxyl radicals. The effective species in CH/Ce-ZnO photocatalytic system are the photogenerated hydroxyl radicals followed by the electron-hole pairs.


Subject(s)
Chitosan , Zinc Oxide , Flowers , Light , Rosaniline Dyes
SELECTION OF CITATIONS
SEARCH DETAIL
...