Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3657, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719795

ABSTRACT

Cell states are regulated by the response of signaling pathways to receptor ligand-binding and intercellular interactions. High-resolution imaging has been attempted to explore the dynamics of these processes and, recently, multiplexed imaging has profiled cell states by achieving a comprehensive acquisition of spatial protein information from cells. However, the specificity of antibodies is still compromised when visualizing activated signals. Here, we develop Precise Emission Canceling Antibodies (PECAbs) that have cleavable fluorescent labeling. PECAbs enable high-specificity sequential imaging using hundreds of antibodies, allowing for reconstruction of the spatiotemporal dynamics of signaling pathways. Additionally, combining this approach with seq-smFISH can effectively classify cells and identify their signal activation states in human tissue. Overall, the PECAb system can serve as a comprehensive platform for analyzing complex cell processes.


Subject(s)
Fluorescent Antibody Technique , Humans , Fluorescent Antibody Technique/methods , Signal Transduction , Antibodies/immunology , Animals , In Situ Hybridization, Fluorescence/methods , Microscopy, Fluorescence/methods , Fluorescent Dyes/chemistry , Single Molecule Imaging/methods
2.
Commun Biol ; 7(1): 61, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191828

ABSTRACT

The nucleosome is a fundamental unit of chromatin in which about 150 base pairs of DNA are wrapped around a histone octamer. The overlapping di-nucleosome has been proposed as a product of chromatin remodeling around the transcription start site, and previously found as a chromatin unit, in which about 250 base pairs of DNA continuously bind to the histone core composed of a hexamer and an octamer. In the present study, our genome-wide analysis of human cells suggests another higher nucleosome stacking structure, the overlapping tri-nucleosome, which wraps about 300-350 base-pairs of DNA in the region downstream of certain transcription start sites of actively transcribed genes. We determine the cryo-electron microscopy (cryo-EM) structure of the overlapping tri-nucleosome, in which three subnucleosome moieties, hexasome, hexasome, and octasome, are associated by short connecting DNA segments. Small angle X-ray scattering and coarse-grained molecular dynamics simulation analyses reveal that the cryo-EM structure of the overlapping tri-nucleosome may reflect its structure in solution. Our findings suggest that nucleosome stacking structures composed of hexasome and octasome moieties may be formed by nucleosome remodeling factors around transcription start sites for gene regulation.


Subject(s)
Histones , Nucleosomes , Humans , Nucleosomes/genetics , Cryoelectron Microscopy , Histones/genetics , Chromatin , DNA/genetics
4.
STAR Protoc ; 3(2): 101346, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35496796

ABSTRACT

Photo-isolation chemistry (PIC) enables isolation of transcriptome information from locally defined areas by photo-irradiation. Here, we present an optimized PIC protocol for formalin-fixed frozen and paraffin mouse sections and fresh-frozen mouse sections. We describe tissue section preparation and permeabilization, followed by in situ reverse transcription using photo-caged primers. We then detail immunostaining and UV-mediated uncaging to the target areas, followed by linear amplification of uncaged cDNAs, library preparation, and quantification. This protocol can be applied to various animal tissue types. For complete details on the use and execution of this protocol, please refer to Honda et al. (2021).


Subject(s)
Formaldehyde , Transcriptome , Animals , DNA, Complementary , Frozen Sections/methods , Gene Library , Mice
5.
Front Cell Dev Biol ; 10: 780038, 2022.
Article in English | MEDLINE | ID: mdl-35372337

ABSTRACT

The musculoskeletal system is integrated by tendons that are characterized by the expression of scleraxis (Scx), a functionally important transcription factor. Here, we newly developed a tenocyte induction method using induced pluripotent stem cells established from ScxGFP transgenic mice by monitoring fluorescence, which reflects a dynamic differentiation process. Among several developmentally relevant factors, transforming growth factor-beta 2 (TGF-ß2) was the most potent inducer for differentiation of tenomodulin-expressing mature tenocytes. Single-cell RNA sequencing (scRNA-seq) revealed 11 distinct clusters, including mature tenocyte population and tenogenic differentiation trajectory, which recapitulated the in vivo developmental process. Analysis of the scRNA-seq dataset highlighted the importance of retinoic acid (RA) as a regulatory pathway of tenogenic differentiation. RA signaling was shown to have inhibitory effects on entheseal chondrogenic differentiation as well as TGF-ß2-dependent tenogenic/fibrochondrogenic differentiation. The collective findings provide a new opportunity for tendon research and further insight into the mechanistic understanding of the differentiation pathway to a tenogenic fate.

6.
Cell Stem Cell ; 29(2): 265-280.e6, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34856120

ABSTRACT

Adaptation to mechanical load, leading to enhanced force and power output, is a characteristic feature of skeletal muscle. Formation of new myonuclei required for efficient muscle hypertrophy relies on prior activation and proliferation of muscle stem cells (MuSCs). However, the mechanisms controlling MuSC expansion under conditions of increased load are not fully understood. Here we demonstrate that interstitial mesenchymal progenitors respond to mechanical load and stimulate MuSC proliferation in a surgical mouse model of increased muscle load. Mechanistically, transcriptional activation of Yes-associated protein 1 (Yap1)/transcriptional coactivator with PDZ-binding motif (Taz) in mesenchymal progenitors results in local production of thrombospondin-1 (Thbs1), which, in turn, drives MuSC proliferation through CD47 signaling. Under homeostatic conditions, however, CD47 signaling is insufficient to promote MuSC proliferation and instead depends on prior downregulation of the Calcitonin receptor. Our results suggest that relayed signaling between mesenchymal progenitors and MuSCs through a Yap1/Taz-Thbs1-CD47 pathway is critical to establish the supply of MuSCs during muscle hypertrophy.


Subject(s)
CD47 Antigen , Myoblasts , Animals , CD47 Antigen/metabolism , Hypertrophy/metabolism , Mice , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Stem Cells/metabolism
7.
PLoS Comput Biol ; 17(11): e1009579, 2021 11.
Article in English | MEDLINE | ID: mdl-34797848

ABSTRACT

Organisms are composed of various cell types with specific states. To obtain a comprehensive understanding of the functions of organs and tissues, cell types have been classified and defined by identifying specific marker genes. Statistical tests are critical for identifying marker genes, which often involve evaluating differences in the mean expression levels of genes. Differentially expressed gene (DEG)-based analysis has been the most frequently used method of this kind. However, in association with increases in sample size such as in single-cell analysis, DEG-based analysis has faced difficulties associated with the inflation of P-values. Here, we propose the concept of discriminative feature of cells (DFC), an alternative to using DEG-based approaches. We implemented DFC using logistic regression with an adaptive LASSO penalty to perform binary classification for discriminating a population of interest and variable selection to obtain a small subset of defining genes. We demonstrated that DFC prioritized gene pairs with non-independent expression using artificial data and that DFC enabled characterization of the muscle satellite/progenitor cell population. The results revealed that DFC well captured cell-type-specific markers, specific gene expression patterns, and subcategories of this cell population. DFC may complement DEG-based methods for interpreting large data sets. DEG-based analysis uses lists of genes with differences in expression between groups, while DFC, which can be termed a discriminative approach, has potential applications in the task of cell characterization. Upon recent advances in the high-throughput analysis of single cells, methods of cell characterization such as scRNA-seq can be effectively subjected to the discriminative methods.


Subject(s)
Gene Expression , Algorithms , Cluster Analysis , Computer Simulation , Genetic Markers , Humans , Logistic Models
8.
Mol Syst Biol ; 17(11): e10323, 2021 11.
Article in English | MEDLINE | ID: mdl-34730297

ABSTRACT

Recent advances in genome-wide technologies have enabled analyses using small cell numbers of even single cells. However, obtaining tissue epigenomes with cell-type resolution from large organs and tissues still remains challenging, especially when the available material is limited. Here, we present a ChIL-based approach for analyzing the diverse cellular dynamics at the tissue level using high-depth epigenomic data. "ChIL for tissues" allows the analysis of a single tissue section and can reproducibly generate epigenomic profiles from several tissue types, based on the distribution of target epigenomic states, tissue morphology, and number of cells. The proposed method enabled the independent evaluation of changes in cell populations and gene activation in cells from regenerating skeletal muscle tissues, using a statistical model of RNA polymerase II distribution on gene loci. Thus, the integrative analyses performed using ChIL can elucidate in vivo cell-type dynamics of tissues.


Subject(s)
Epigenome , Epigenomics , Genome , Population Density
9.
Cell Rep ; 36(8): 109569, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34433063

ABSTRACT

An effective combination of multi-omic datasets can enhance our understanding of complex biological phenomena. To build a context-dependent network with multiple omic layers, i.e., a trans-omic network, we perform phosphoproteomics, transcriptomics, proteomics, and metabolomics of murine liver for 4 h after insulin administration and integrate the resulting time series. Structural characteristics and dynamic nature of the network are analyzed to elucidate the impact of insulin. Early and prominent changes in protein phosphorylation and persistent and asynchronous changes in mRNA and protein levels through non-transcriptional mechanisms indicate enhanced crosstalk between phosphorylation-mediated signaling and protein expression regulation. Metabolic response shows different temporal regulation with transient increases at early time points across categories and enhanced response in the amino acid and nucleotide categories at later time points as a result of process convergence. This extensive and dynamic view of the trans-omic network elucidates prominent regulatory mechanisms that drive insulin responses through intricate interlayer coordination.


Subject(s)
Gene Expression Regulation/drug effects , Insulin/pharmacology , Liver/microbiology , Metabolomics , Proteomics , Signal Transduction/drug effects , Animals , Humans , Insulin/metabolism , Male , Mice
10.
Nat Commun ; 12(1): 4416, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34285220

ABSTRACT

In multicellular organisms, expression profiling in spatially defined regions is crucial to elucidate cell interactions and functions. Here, we establish a transcriptome profiling method coupled with photo-isolation chemistry (PIC) that allows the determination of expression profiles specifically from photo-irradiated regions of interest. PIC uses photo-caged oligodeoxynucleotides for in situ reverse transcription. PIC transcriptome analysis detects genes specifically expressed in small distinct areas of the mouse embryo. Photo-irradiation of single cells demonstrated that approximately 8,000 genes were detected with 7 × 104 unique read counts. Furthermore, PIC transcriptome analysis is applicable to the subcellular and subnuclear microstructures (stress granules and nuclear speckles, respectively), where hundreds of genes can be detected as being specifically localised. The spatial density of the read counts is higher than 100 per square micrometre. Thus, PIC enables high-depth transcriptome profiles to be determined from limited regions up to subcellular and subnuclear resolutions.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Spatial Analysis , Transcriptome/genetics , Animals , Brain/growth & development , Embryo, Mammalian , Feasibility Studies , Genetic Techniques , HeLa Cells , Humans , Male , Mice , NIH 3T3 Cells , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/genetics , Oligodeoxyribonucleotides/radiation effects , Reverse Transcription/radiation effects , Transcriptome/radiation effects , Ultraviolet Rays
11.
Genes Cells ; 26(7): 530-540, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33987903

ABSTRACT

Single-cell RNA-sequencing analysis is one of the most effective tools for understanding specific cellular states. The use of single cells or pooled cells in RNA-seq analysis requires the isolation of cells from a tissue or culture. Although trypsin or more recently cold-active protease (CAP) has been used for cell dissociation, the extent to which the gene expression changes are suppressed has not been clarified. To this end, we conducted detailed profiling of the enzyme-dependent gene expression changes in mouse skeletal muscle progenitor cells, focusing on the enzyme treatment time, amount and temperature. We found that the genes whose expression was changed by the enzyme treatment could be classified in a time-dependent manner and that there were genes whose expression was changed independently of the enzyme treatment time, amount and temperature. This study will be useful as reference data for genes that should be excluded or considered for RNA-seq analysis using enzyme isolation methods.


Subject(s)
Myoblasts/metabolism , RNA-Seq/methods , Transcriptome , Animals , Cell Line , Mice , Myoblasts/drug effects , NIH 3T3 Cells , RNA-Seq/standards , Trypsin/pharmacology
12.
Elife ; 102021 05 10.
Article in English | MEDLINE | ID: mdl-33970102

ABSTRACT

In eukaryotes, histone variant distribution within the genome is the key epigenetic feature. To understand how each histone variant is targeted to the genome, we developed a new method, the RhIP (Reconstituted histone complex Incorporation into chromatin of Permeabilized cell) assay, in which epitope-tagged histone complexes are introduced into permeabilized cells and incorporated into their chromatin. Using this method, we found that H3.1 and H3.3 were incorporated into chromatin in replication-dependent and -independent manners, respectively. We further found that the incorporation of histones H2A and H2A.Z mainly occurred at less condensed chromatin (open), suggesting that condensed chromatin (closed) is a barrier for histone incorporation. To overcome this barrier, H2A, but not H2A.Z, uses a replication-coupled deposition mechanism. Our study revealed that the combination of chromatin structure and DNA replication dictates the differential histone deposition to maintain the epigenetic chromatin states.


Subject(s)
Chromatin/metabolism , Histones/metabolism , Nucleosomes/metabolism , Cell Line, Tumor , Chromatin/genetics , Chromatin Assembly and Disassembly , Genome , HeLa Cells , Humans
13.
EMBO Rep ; 22(3): e51989, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33605056

ABSTRACT

During X chromosome inactivation (XCI), in female placental mammals, gene silencing is initiated by the Xist long non-coding RNA. Xist accumulation at the X leads to enrichment of specific chromatin marks, including PRC2-dependent H3K27me3 and SETD8-dependent H4K20me1. However, the dynamics of this process in relation to Xist RNA accumulation remains unknown as is the involvement of H4K20me1 in initiating gene silencing. To follow XCI dynamics in living cells, we developed a genetically encoded, H3K27me3-specific intracellular antibody or H3K27me3-mintbody. By combining live-cell imaging of H3K27me3, H4K20me1, the X chromosome and Xist RNA, with ChIP-seq analysis we uncover concurrent accumulation of both marks during XCI, albeit with distinct genomic distributions. Furthermore, using a Xist B and C repeat mutant, which still shows gene silencing on the X but not H3K27me3 deposition, we also find a complete lack of H4K20me1 enrichment. This demonstrates that H4K20me1 is dispensable for the initiation of gene silencing, although it may have a role in the chromatin compaction that characterises facultative heterochromatin.


Subject(s)
Histones , RNA, Long Noncoding , Animals , Female , Gene Silencing , Histones/genetics , Histones/metabolism , Placenta/metabolism , Pregnancy , RNA, Long Noncoding/genetics , X Chromosome/genetics , X Chromosome Inactivation/genetics
14.
J Biochem ; 169(6): 653-661, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-33479729

ABSTRACT

MyoD, a myogenic differentiation protein, has been studied for its critical role in skeletal muscle differentiation. MyoD-expressing myoblasts have a potency to be differentiated with proliferation of ectopic cells. However, little is known about the effect on chromatin structure of MyoD binding in proliferative myoblasts. In this study, we evaluated the chromatin structure around MyoD-bound genome regions during the cell cycle by chromatin immunoprecipitation sequencing. Genome-wide analysis of histone modifications was performed in proliferative mouse C2C12 myoblasts during three phases (G1, S, G2/M) of the cell cycle. We found that MyoD-bound genome regions had elevated levels of active histone modifications, such as H3K4me1/2/3 and H3K27ac, compared with MyoD-unbound genome regions during the cell cycle. We also demonstrated that the elevated H3K4me2/3 modification level was maintained during the cell cycle, whereas the H3K27ac and H3K4me1 modification levels decreased to the same level as MyoD-unbound genome regions during the later phases. Immunoblot analysis revealed that MyoD abundance was high in the G1 phase then decreased in the S and G2/M phases. Our results suggest that MyoD binding formed selective epigenetic memories with H3K4me2/3 during the cell cycle in addition to myogenic gene induction via active chromatin formation coupled with transcription.


Subject(s)
Cell Cycle , Cell Proliferation , Chromatin/chemistry , Genome , Muscle, Skeletal/physiology , MyoD Protein/metabolism , Myoblasts/physiology , Animals , Cell Differentiation , Chromatin/genetics , Chromatin/metabolism , Mice , Muscle Development , Muscle, Skeletal/cytology , MyoD Protein/genetics , Myoblasts/cytology , Protein Binding
15.
Nat Protoc ; 15(10): 3334-3360, 2020 10.
Article in English | MEDLINE | ID: mdl-32807906

ABSTRACT

Cell identity is determined by the selective activation or silencing of specific genes via transcription factor binding and epigenetic modifications on the genome. Chromatin immunoprecipitation (ChIP) has been the standard technique for mapping the sites of transcription factor binding and histone modification. Recently, alternative methods to ChIP have been developed for addressing the increasing demands for low-input epigenomic profiling. Chromatin integration labeling (ChIL) followed by sequencing (ChIL-seq) has been demonstrated to be particularly useful for epigenomic profiling of low-input samples or even single cells because the technique amplifies the target genomic sequence before cell lysis. After labeling the target protein or modification in situ with an oligonucleotide-conjugated antibody (ChIL probe), the nearby genome sequence is amplified by Tn5 transposase-mediated transposition followed by T7 RNA polymerase-mediated transcription. ChIL-seq enables the detection of the antibody target localization under a fluorescence microscope and at the genomic level. Here we describe the detailed protocol of ChIL-seq with assessment methods for the key steps, including ChIL probe reaction, transposition, in situ transcription and sequencing library preparation. The protocol usually takes 3 d to prepare the sequencing library, including overnight incubations for the ChIL probe reaction and in situ transcription. The ChIL probe can be separately prepared and stored for several months, and its preparation and evaluation protocols are also documented in detail. An optional analysis for multiple targets (multitarget ChIL-seq) is also described. We anticipate that the protocol presented here will make the ChIL technique more widely accessible for analyzing precious samples and facilitate further applications.


Subject(s)
Chromatin Immunoprecipitation Sequencing/methods , Chromosome Mapping/methods , DNA-Binding Proteins/analysis , Animals , Cell Line , Cell Line, Tumor , Chromatin/metabolism , Chromatin Immunoprecipitation/methods , Epigenesis, Genetic/genetics , Epigenomics/methods , Gene Library , Genome , Genomics , High-Throughput Nucleotide Sequencing/methods , Histones/metabolism , Humans , Mice , Protein Processing, Post-Translational/genetics , Sequence Analysis, DNA/methods , Transcription Factors/metabolism , Transposases/metabolism
16.
Elife ; 82019 11 22.
Article in English | MEDLINE | ID: mdl-31755865

ABSTRACT

We previously demonstrated that CRM1, a major nuclear export factor, accumulates at Hox cluster regions to recruit nucleoporin-fusion protein Nup98HoxA9, resulting in robust activation of Hox genes (Oka et al., 2016). However, whether this phenomenon is general to other leukemogenic proteins remains unknown. Here, we show that two other leukemogenic proteins, nucleoporin-fusion SET-Nup214 and the NPM1 mutant, NPM1c, which contains a nuclear export signal (NES) at its C-terminus and is one of the most frequent mutations in acute myeloid leukemia, are recruited to the HOX cluster region via chromatin-bound CRM1, leading to HOX gene activation in human leukemia cells. Furthermore, we demonstrate that this mechanism is highly sensitive to a CRM1 inhibitor in leukemia cell line. Together, these findings indicate that CRM1 acts as a key molecule that connects leukemogenic proteins to aberrant HOX gene regulation either via nucleoporin-CRM1 interaction (for SET-Nup214) or NES-CRM1 interaction (for NPM1c).


Subject(s)
Karyopherins/genetics , Leukemia, Myeloid, Acute/genetics , Nuclear Pore Complex Proteins/genetics , Nuclear Proteins/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Active Transport, Cell Nucleus/genetics , Cell Line, Tumor , Cell Nucleus/genetics , Chromatin/genetics , Cytoplasm/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Leukemic/genetics , Histone Chaperones/genetics , Homeodomain Proteins/genetics , Humans , Leukemia, Myeloid, Acute/pathology , Mutation/genetics , Nuclear Export Signals/genetics , Nucleophosmin , Exportin 1 Protein
17.
Elife ; 82019 09 23.
Article in English | MEDLINE | ID: mdl-31545169

ABSTRACT

In overloaded and regenerating muscle, the generation of new myonuclei depends on muscle satellite cells (MuSCs). Because MuSC behaviors in these two environments have not been considered separately, MuSC behaviors in overloaded muscle remain unexamined. Here, we show that most MuSCs in overloaded muscle, unlike MuSCs in regenerating muscle, proliferate in the absence of MyoD expression. Mechanistically, MuSCs in overloaded muscle sustain the expression of Heyl, a Notch effector gene, to suppress MyoD expression, which allows effective MuSC proliferation on myofibers and beneath the basal lamina. Although Heyl-knockout mice show no impairment in an injury model, in a hypertrophy model, their muscles harbor fewer new MuSC-derived myonuclei due to increased MyoD expression and diminished proliferation, which ultimately causes blunted hypertrophy. Our results show that sustained HeyL expression is critical for MuSC proliferation specifically in overloaded muscle, and thus indicate that the MuSC-proliferation mechanism differs in overloaded and regenerating muscle.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Cell Proliferation , Gene Expression Regulation , Hypertrophy , Muscles/physiology , Regeneration , Satellite Cells, Skeletal Muscle/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Mice , Mice, Knockout , Muscles/cytology , MyoD Protein/metabolism
18.
Open Biol ; 9(8): 190116, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31409230

ABSTRACT

Tn5 transposase is a bacterial enzyme that integrates a DNA fragment into genomic DNA, and is used as a tool for detecting nucleosome-free regions of genomic DNA in eukaryotes. However, in chromatin, the DNA targeting by Tn5 transposase has remained unclear. In the present study, we reconstituted well-positioned 601 dinucleosomes, in which two nucleosomes are connected with a linker DNA, and studied the DNA integration sites in the dinucleosomes by Tn5 transposase in vitro. We found that Tn5 transposase preferentially targets near the entry-exit DNA regions within the nucleosome. Tn5 transposase minimally cleaved the dinucleosome without a linker DNA, indicating that the linker DNA between two nucleosomes is important for the Tn5 transposase activity. In the presence of a 30 base-pair linker DNA, Tn5 transposase targets the middle of the linker DNA, in addition to the entry-exit sites of the nucleosome. Intriguingly, this Tn5-targeting characteristic is conserved in a dinucleosome substrate with a different DNA sequence from the 601 sequence. Therefore, the Tn5-targeting preference in the nucleosomal templates reported here provides important information for the interpretation of Tn5 transposase-based genomics methods, such as ATAC-seq.


Subject(s)
Nucleosomes/chemistry , Transposases/chemistry , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , DNA/chemistry , DNA/metabolism , Histones/metabolism , Humans , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Protein Binding , Sequence Analysis, DNA , Transposases/metabolism
19.
Nat Commun ; 10(1): 3778, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31439835

ABSTRACT

MCF7 cells acquire estrogen-independent proliferation after long-term estrogen deprivation (LTED), which recapitulates endocrine therapy resistance. LTED cells can become primed for apoptosis, but the underlying mechanism is largely unknown. We previously reported that Eleanor non-coding RNAs (ncRNAs) upregulate the ESR1 gene in LTED cells. Here, we show that Eleanors delineate the topologically associating domain (TAD) of the ESR1 locus in the active nuclear compartment of LTED cells. The TAD interacts with another transcriptionally active TAD, which is 42.9 Mb away from ESR1 and contains a gene encoding the apoptotic transcription factor FOXO3. Inhibition of a promoter-associated Eleanor suppresses all genes inside the Eleanor TAD and the long-range interaction between the two TADs, but keeps FOXO3 active to facilitate apoptosis in LTED cells. These data indicate a role of ncRNAs in chromatin domain regulation, which may underlie the apoptosis-prone nature of therapy-resistant breast cancer cells and could be good therapeutic targets.


Subject(s)
Apoptosis/genetics , Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Gene Expression Regulation, Neoplastic , RNA, Untranslated/metabolism , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Apoptosis/drug effects , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/therapeutic use , Binding Sites/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Chromatin/genetics , Chromatin/metabolism , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Female , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Genetic Loci/genetics , High-Throughput Nucleotide Sequencing , Humans , MCF-7 Cells , Promoter Regions, Genetic/genetics , Up-Regulation
20.
Development ; 146(15)2019 08 13.
Article in English | MEDLINE | ID: mdl-31371378

ABSTRACT

The spatiotemporal identity of neural progenitors and the regional control of neurogenesis are essential for the development of cerebral cortical architecture. Here, we report that mammalian DM domain factors (Dmrt) determine the identity of cerebral cortical progenitors. Among the Dmrt family genes expressed in the developing dorsal telencephalon, Dmrt3 and Dmrta2 show a medialhigh/laterallow expression gradient. Their simultaneous loss confers a ventral identity to dorsal progenitors, resulting in the ectopic expression of Gsx2 and massive production of GABAergic olfactory bulb interneurons in the dorsal telencephalon. Furthermore, double-mutant progenitors in the medial region exhibit upregulated Pax6 and more lateral characteristics. These ventral and lateral shifts in progenitor identity depend on Dmrt gene dosage. We also found that Dmrt factors bind to Gsx2 and Pax6 enhancers to suppress their expression. Our findings thus reveal that the graded expression of Dmrt factors provide positional information for progenitors by differentially repressing downstream genes in the developing cerebral cortex.


Subject(s)
Cerebral Cortex/embryology , Neural Stem Cells/cytology , Neurogenesis/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Cells, Cultured , Cerebral Cortex/cytology , Homeodomain Proteins/biosynthesis , Homeodomain Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , PAX6 Transcription Factor/biosynthesis , PAX6 Transcription Factor/metabolism , RNA Interference , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...