Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 231(3): 1195-1209, 2021 08.
Article in English | MEDLINE | ID: mdl-33605460

ABSTRACT

Bromeliads represent a major component of neotropical forests and encompass a considerable diversity of life forms and nutritional modes. Bromeliads explore highly stressful habitats and root-associated fungi may play a crucial role in this, but the driving factors and variations in root-associated fungi remain largely unknown. We explored root-associated fungal communities in 17 bromeliad species and their variations linked to host identity, life forms and nutritional modes by using ITS1 gene-based high-throughput sequencing and by characterizing fungal functional guilds. We found a dual association of mycorrhizal and nonmycorrhizal fungi. The different species, life forms and nutritional modes among bromeliad hosts had fungal communities that differ in their taxonomic and functional composition. Specifically, roots of epiphytic bromeliads had more endophytic fungi and dark septate endophytes and fewer mycorrhizal fungi than terrestrial bromeliads and lithophytes. Our results contribute to a fundamental knowledge base on different fungal groups in previously undescribed Bromeliaceae. The diverse root-associated fungal communities in bromeliads may enhance plant fitness in both stressful and nutrient-poor environments and may give more flexibility to the plants to adapt to changing environmental conditions.


Subject(s)
Mycobiome , Mycorrhizae , Endophytes , Fungi/genetics , Phylogeny , Plant Roots , Plants
2.
Nat Commun ; 11(1): 3897, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32753587

ABSTRACT

Lipo-chitooligosaccharides (LCOs) are signaling molecules produced by rhizobial bacteria that trigger the nodulation process in legumes, and by some fungi that also establish symbiotic relationships with plants, notably the arbuscular and ecto mycorrhizal fungi. Here, we show that many other fungi also produce LCOs. We tested 59 species representing most fungal phyla, and found that 53 species produce LCOs that can be detected by functional assays and/or by mass spectroscopy. LCO treatment affects spore germination, branching of hyphae, pseudohyphal growth, and transcription in non-symbiotic fungi from the Ascomycete and Basidiomycete phyla. Our findings suggest that LCO production is common among fungi, and LCOs may function as signals regulating fungal growth and development.


Subject(s)
Chitin/analogs & derivatives , Chitin/metabolism , Fungi/growth & development , Fungi/metabolism , Signal Transduction/physiology , Ascomycota/growth & development , Basidiomycota/growth & development , Chitosan , Ecology , Fatty Acids/metabolism , Mycorrhizae/physiology , Oligosaccharides , Rhizobium/metabolism , Spores, Fungal/growth & development , Symbiosis/physiology
3.
Environ Sci Pollut Res Int ; 26(20): 20040-20051, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30109687

ABSTRACT

In the context of urban agriculture, where soils are frequently contaminated with metal(loid)s (TM), we studied the influence of vermicompost amendments on symbiotic fungal communities associated with plants grown in two metal-rich soils. Leek (Allium porrum L.) plants were grown with or without vermicompost in two metal-rich soils characterized by either geogenic or anthropogenic TM sources, to assess the influence of pollutant origin on soil-plant transfer. Fungal communities associated with the leek roots were identified by high throughput Illumina MiSeq and TM contents were measured using mass spectrometry. Vermicompost addition led to a dramatic change in the fungal community with a loss of diversity in the two tested soils. This effect could partially explain the changes in metal transfer at the soil-AMF-plant interface. Our results suggest being careful while using composts when growing edibles in contaminated soils. More generally, this study highlights the need for further research in the field of fungal communities to refine practical recommendations to gardeners. Graphical abstract.


Subject(s)
Composting , Metals/pharmacokinetics , Mycobiome/physiology , Onions/growth & development , Plant Roots/microbiology , Soil Pollutants/pharmacokinetics , Agriculture/methods , Mycobiome/genetics , Mycorrhizae , Onions/microbiology , Soil/chemistry , Soil Microbiology , Symbiosis
4.
Sci Total Environ ; 624: 1140-1151, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29929226

ABSTRACT

The influence of biofertilization with arbuscular mycorrhizal fungi (AMF) on trace metal and metalloids (TM) - Pb, Cd and Sb - uptake by leek (Allium porrum L.) grown in contaminated soils was investigated. The effect of biofertilization on human bioaccessibility of the TM in the plants was also examined. Leek were cultivated in one soil with geogenic TM sources and one soil with anthropogenic TM, to assess the influence of pollutant origin on soil-plant transfer. Leek were grown for six months on these contaminated soils, with and without a local AMF based biofertilizer. Fungal communities associated with leek roots were identified by high throughput sequencing (illumina Miseq®) metagenomic analysis. The TM compartmentation was studied using electron microscopy in plants tissues. In all the soils, biofertilization generated a loss of diversity favoring the AM fungal species Rhizophagus irregularis, which could explain the observed modification of metal transfer at the soil-AMF-plant interface. The human bioaccessibility of Sb increased in biofertilized treatments. Consequently, this latter result highlights a potential health risk of the use of this fertilization technique on contaminated soil since further field investigation is performed to better understand the mechanisms governing (1) the effect of AMF on TM bioaccessibility and (2) the evolution of AMF communities in contaminated soils.


Subject(s)
Onions/chemistry , Soil Microbiology , Soil Pollutants/metabolism , Biodiversity , Environmental Monitoring , Fertilizers , Gardening , Humans , Mycorrhizae , Onions/microbiology , Soil Pollutants/analysis , Soil Pollutants/chemistry
5.
Chemosphere ; 191: 272-279, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29040941

ABSTRACT

1. CONTEXT: Urban areas are often contaminated with various forms of persistent metal (loid) and emerging contaminants such as antimony (Sb). Thus, in the context of urban agriculture where sustainable practices such as biofertilizers application (arbuscular mycorrhizal fungi, AMF) could improve nutrient transfer from the soil to the vegetables, the effect of AMF on metal (loid) mobility and human bioaccessibility is still poorly known. 2. METHODS: The role of AMF in Sb uptake by lettuce and carrot grown in artificial substrate spiked with different Sb chemical species was investigated. Plants were grown under hydroponic conditions and half of the treatments received a concentrated spore solution to obtain mycorrhized and non-mycorrhized plants. Three weeks before harvest, plants were exposed to 10 mg.L-1 of either Sb2O3 or KSbO-tartrate (KSb). 3. RESULTS: The presence of AMF significantly increased its accumulation in carrots (all organs) with higher accumulation in roots. In lettuce, accumulation appeared to be dependent on the Sb chemical species. Moreover, it was observed for the first time that AMF changed the human bioaccessible fraction of Sb in edible organs. 4. IMPLICATIONS: The present results highlight a possible risk of Sb transfer from soil to edible plants cultivated in soil naturally containing AMF propagules, or when AMF are added as biofertilizers. After validating the influence of soil environment and AMF on Sb behavior in the field, these results should be considered in health risk assessments.


Subject(s)
Antimony/pharmacokinetics , Mycorrhizae/pathogenicity , Vegetables/metabolism , Agriculture/methods , Environmental Exposure , Gardens , Humans , Plant Roots/chemistry , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...