Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Nat Med ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689060

ABSTRACT

Antibodies targeting the immune checkpoint molecules PD-1, PD-L1 and CTLA-4, administered alone or in combination with chemotherapy, are the standard of care in most patients with metastatic non-small-cell lung cancers. When given before curative surgery, tumor responses and improved event-free survival are achieved. New antibody combinations may be more efficacious and tolerable. In an ongoing, open-label phase 2 study, 60 biomarker-unselected, treatment-naive patients with resectable non-small-cell lung cancer were randomized to receive two preoperative doses of nivolumab (anti-PD-1) with or without relatlimab (anti-LAG-3) antibody therapy. The primary study endpoint was the feasibility of surgery within 43 days, which was met by all patients. Curative resection was achieved in 95% of patients. Secondary endpoints included pathological and radiographic response rates, pathologically complete resection rates, disease-free and overall survival rates, and safety. Major pathological (≤10% viable tumor cells) and objective radiographic responses were achieved in 27% and 10% (nivolumab) and in 30% and 27% (nivolumab and relatlimab) of patients, respectively. In 100% (nivolumab) and 90% (nivolumab and relatlimab) of patients, tumors and lymph nodes were pathologically completely resected. With 12 months median duration of follow-up, disease-free survival and overall survival rates at 12 months were 89% and 93% (nivolumab), and 93% and 100% (nivolumab and relatlimab). Both treatments were safe with grade ≥3 treatment-emergent adverse events reported in 10% and 13% of patients per study arm. Exploratory analyses provided insights into biological processes triggered by preoperative immunotherapy. This study establishes the feasibility and safety of dual targeting of PD-1 and LAG-3 before lung cancer surgery.ClinicalTrials.gov Indentifier: NCT04205552 .

2.
Virchows Arch ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37731064

ABSTRACT

In addition to morphologic analysis, molecular diagnostic work up of Spitz tumours is often of great value for their accurate diagnosis/classification. Nowadays, next-generation sequencing (NGS) is the predominant screening method in molecular diagnostics. Up to 80% of these melanocytic neoplasms comprise gene fusions as genetic anomalies for which the driver codes for a protein harbouring a kinase domain. However, because of the variety of fusion partners the use of PCR-based targeted enrichment NGS methods is not recommended. We describe a series of four Spitz tumour samples in which distinct gene fusions were detected by hybridisation-based capture NGS (TPM3::ALK, LIMA1::ROS1, LRRFIP2::ROS1 and MYO5A::RET). Two of these fusions are not previously described. All 4 fusions were confirmed by reverse transcription-PCR. These findings demonstrate the need for molecular analysis that can detect unknown fusions in Spitz neoplasms for optimal diagnosis.

3.
Cancers (Basel) ; 15(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37345038

ABSTRACT

Lung cancer remains the leading cause of cancer death worldwide, with the majority of cases diagnosed in an advanced stage. Early-stage disease non-small cell lung cancer (NSCLC) has a better outcome, nevertheless the 5-year survival rates drop from 60% for stage IIA to 36% for stage IIIA disease. Early detection and optimized perioperative systemic treatment are frontrunner strategies to reduce this burden. The rapid advancements in molecular diagnostics as well as the growing availability of targeted therapies call for the most efficient detection of actionable biomarkers. Liquid biopsies have already proven their added value in the management of advanced NSCLC but can also optimize patient care in early-stage NSCLC. In addition to having known diagnostic benefits of speed, accessibility, and enhanced biomarker detection compared to tissue biopsy, liquid biopsy could be implemented for screening, diagnostic, and prognostic purposes. Furthermore, liquid biopsy can optimize therapeutic management by overcoming the issue of tumor heterogeneity, monitoring tumor burden, and detecting minimal residual disease (MRD), i.e., the presence of tumor-specific ctDNA, post-operatively. The latter is strongly prognostic and is likely to become a guidance in the postsurgical management. In this review, we present the current evidence on the clinical utility of liquid biopsy in early-stage lung cancer, discuss a selection of key trials, and suggest future applications.

4.
Lung Cancer ; 170: 1-10, 2022 08.
Article in English | MEDLINE | ID: mdl-35689896

ABSTRACT

OBJECTIVES: Immune checkpoint inhibitors (ICIs) improved outcomes in non-small cell lung cancer (NSCLC) patients. We report the predictive utility of human leukocyte antigen class I (HLA-I) diversity and tumor mutational burden (TMB) by comprehensive next-generation sequencing. METHODS: 126 patients were included. TMB high was defined as ≥ 10 nonsynonymous mutations/Mb. Patients exhibit high HLA-I diversity if at least one locus was in the upper 15th percentile for DNA alignment scores. RESULTS: No difference in response rate (RR; 44.4% versus 30.9%; p = 0.1741) or 6-month survival rate (SR; 75.6% versus 77.8%; p = 0.7765) was noted between HLA-I high diversity and low diversity patients. HLA-I high diversity patients did significantly more often exhibit durable clinical benefit (DCB), defined as response or stable disease lasting minimally 6 months (64.4% [29/45] versus 43.2% [35/81]; p = 0.0223). TMB high patients exhibited higher RR (49.1% versus 25.4%; p = 0.0084) and SR 6 months after start ICI (85.5% versus 70.4%; p = 0.0468) than TMB low patients. The proportion of patients with DCB, did not differ significantly between TMB high and low subgroups (60.0% [33/55] versus 42.3% [30/71]; p = 0.0755). Patients with combined dual high TMB and HLA-I diversity had higher RR (63.2% versus 22.2%; p = 0.0033), but SR at 6 months did not differ significantly (84.2% versus 64,4%; p = 0.1536). A significantly higher rate of patients experienced DCB in dual high compared to the dual low group (73.7% [14/19] versus 35.6% [16/45]; p = 0.0052). Triple positive patients (high TMB and HLA-I diversity and PD-L1 positive) had higher RR (63.6% versus 0.0%; p = 0.0047) and SR at 6 months (100% versus 66.7%; p = 0.0378) compared to triple-negative patients. CONCLUSION: HLA-I diversity was able to predict durable clinical benefit in ICI treated NSCLC patients, but failed to confirm as a predictor of response or survival. TMB confirmed as a predictive biomarker.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , B7-H1 Antigen/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , HLA Antigens , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation
5.
Cancers (Basel) ; 14(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35626061

ABSTRACT

The use of targeted Next Generation Sequencing (NGS) for the diagnostic screening of somatic variants in solid tumor samples has proven its high clinical value. Because of the large number of ongoing clinical trials for a multitude of variants in a growing number of genes, as well as the detection of proven and emerging pan-cancer biomarkers including microsatellite instability (MSI) and tumor mutation burden (TMB), the currently employed diagnostic gene panels will become vastly insufficient in the near future. Here, we describe the validation and implementation of the hybrid capture-based comprehensive TruSight Oncology (TSO500) assay that is able to detect single-nucleotide variants (SNVs) and subtle deletions and insertions (indels) in 523 tumor-associated genes, copy-number variants (CNVs) of 69 genes, fusions with 55 cancer driver genes, and MSI and TMB. Extensive validation of the TSO500 assay was performed on DNA or RNA from 170 clinical samples with neoplastic content down to 10%, using multiple tissue and specimen types. Starting with 80 ng DNA and 40 ng RNA extracted from formalin-fixed and paraffine-embedded (FFPE) samples revealed a precision and accuracy >99% for all variant types. The analytical sensitivity and specificity were at least 99% for SNVs, indels, CNVs, MSI, and gene rearrangements. For TMB, only values around the threshold could yield a deviating outcome. The limit-of-detection for SNVs and indels was well below the set threshold of 5% variant allele frequency (VAF). This validated comprehensive genomic profiling assay was then used to screen 624 diagnostic samples, and its success rate for adoption in a clinical diagnostic setting of broad solid tumor screening was assessed on this cohort.

6.
Cancers (Basel) ; 14(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35205782

ABSTRACT

Multiple myeloma (MM), or Kahler's disease, is an incurable plasma cell (PC) cancer in the bone marrow (BM). This malignancy is preceded by one or more asymptomatic precursor conditions, monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering multiple myeloma (SMM). The molecular mechanisms and exact cause of this progression are still not completely understood. In this study, the mutational profile underlying the progression from low-intermediate risk myeloma precursor conditions to MM was studied in serial BM smears. A custom capture-based sequencing platform was developed, including 81 myeloma-related genes. The clonal evolution of single nucleotide variants and short insertions and deletions was studied in serial BM smears from 21 progressed precursor patients with a median time of progression of six years. From the 21 patients, four patients had no variation in one of the 81 studied genes. Interestingly, in 16 of the 17 other patients, at least one variant present in MM was also detected in its precursor BM, even years before progression. Here, the variants were present in the pre-stage at a median of 62 months before progression to MM. Studying these paired BM samples contributes to the knowledge of the evolutionary genetic landscape and provides additional insight into the mutational behavior of mutant clones over time throughout progression.

7.
Am J Clin Pathol ; 157(5): 731-741, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34724038

ABSTRACT

BACKGROUND: Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern associated with immune escape is important to safeguard vaccination efficacy. We describe the potential of delayed N gene amplification in the Allplex SARS-CoV-2 Assay (Seegene) for screening of the B.1.351 (20H/501.V2, variant of concern 2 [VOC.V2], South African SARS-CoV-2 variant) lineage. METHODS: In a study cohort of 397 consecutive polymerase chain reaction-positive samples genotyped by whole-genome sequencing, amplification curves of E/N/S-RdRP targets indicated delayedN vs E gene amplification characteristic of B.1.351. Logistic regression was used to calculate a VOC.V2 probability score that was evaluated as a separate screening test in an independent validation cohort vs sequencing. RESULTS: B.1.351 showed a proportionally delayed amplification of the  N vs E gene. In logistic regression, only N and E gene cycle thresholds independently contributed to B.1.351 prediction, allowing calculation of a VOC.V2 probability score with an area under the curve of 0.94. At an optimal dichotomous cutoff point of 0.12, the VOC.V2 probability score achieved 98.7% sensitivity at 79.9% specificity, resulting in a negative predictive value (NPV) of 99.6% and a positive predictive value of 54.6%. The probability of B.1.351 increased with an increasing VOC.V2 probability score, achieving a likelihood ratio of 12.01 above 0.5. A near-maximal NPV was confirmed in 153 consecutive validation samples. CONCLUSIONS: Delayed N vs E gene amplification in the Allplex SARS-CoV-2 Assay can be used for fast and highly sensitive screening of B.1.351.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Probability , SARS-CoV-2/genetics , Whole Genome Sequencing
8.
Nat Commun ; 12(1): 1861, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767199

ABSTRACT

Multiple myeloma (MM) is consistently preceded by precursor conditions recognized clinically as monoclonal gammopathy of undetermined significance (MGUS) or smoldering myeloma (SMM). We interrogate the whole genome sequence (WGS) profile of 18 MGUS and compare them with those from 14 SMMs and 80 MMs. We show that cases with a non-progressing, clinically stable myeloma precursor condition (n = 15) are characterized by later initiation in the patient's life and by the absence of myeloma defining genomic events including: chromothripsis, templated insertions, mutations in driver genes, aneuploidy, and canonical APOBEC mutational activity. This data provides evidence that WGS can be used to recognize two biologically and clinically distinct myeloma precursor entities that are either progressive or stable.


Subject(s)
Genome, Human/genetics , Monoclonal Gammopathy of Undetermined Significance/genetics , Multiple Myeloma/genetics , Smoldering Multiple Myeloma/genetics , DNA Copy Number Variations/genetics , Disease Progression , Humans , Monoclonal Gammopathy of Undetermined Significance/pathology , Multiple Myeloma/pathology , Polymorphism, Single Nucleotide/genetics , Risk Factors , Smoldering Multiple Myeloma/pathology , Whole Genome Sequencing
9.
J Mol Diagn ; 22(6): 757-769, 2020 06.
Article in English | MEDLINE | ID: mdl-32205293

ABSTRACT

Stratification of patients for targeted and immune-based therapies requires extensive genomic profiling that enables sensitive detection of clinically relevant variants and interrogation of biomarkers, such as tumor mutational burden (TMB) and microsatellite instability (MSI). Detection of single and multiple nucleotide variants, copy number variants, MSI, and TMB was evaluated using a commercially available next-generation sequencing panel containing 523 cancer-related genes (1.94 megabases). Analysis of formalin-fixed, paraffin-embedded tissue sections and cytologic material from 45 tumor samples showed that all previously known MSI-positive samples (n = 7), amplifications (n = 9), and pathogenic variants (n = 59) could be detected. TMB and MSI scores showed high intralaboratory and interlaboratory reproducibility (eight samples tested in 11 laboratories). For reliable TMB analysis, 20 ng DNA was shown to be sufficient, even for relatively poor-quality samples. A minimum of 20% neoplastic cells was required to minimize variations in TMB values induced by chromosomal instability or tumor heterogeneity. Subsequent analysis of 58 consecutive lung cancer samples in a diagnostic setting was successful and revealed sufficient somatic mutations to generate mutational signatures in 14 cases. In conclusion, the 523-gene assay can be applied for evaluation of multiple DNA-based biomarkers relevant for treatment selection.


Subject(s)
DNA Copy Number Variations , High-Throughput Nucleotide Sequencing/methods , Microsatellite Instability , Neoplasms/genetics , Oncogenes , Polymorphism, Single Nucleotide , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Case-Control Studies , Female , Humans , Male , Middle Aged , Neoplasms/blood , Neoplasms/pathology , Reproducibility of Results , Sequence Analysis, DNA/methods
10.
Case Rep Endocrinol ; 2019: 9095753, 2019.
Article in English | MEDLINE | ID: mdl-31885948

ABSTRACT

Anaplastic thyroid carcinoma (ATC) is a deadly disease with very limited therapeutic options. There is an urgent need for new and efficacious drugs. Unfortunately accrual in clinical trials is problematic because of the rarity of the disease and often poor performance status at diagnosis. Recently some data have emerged suggesting a role for immunotherapy in the treatment of ATC. We describe the case of a 75-year-old patient with poor performance status and compromised airway and oesophagus at diagnosis, showing a rapid and dramatic response to first line single agent pembrolizumab. Disease progression in the brain occurred 16 months after initial diagnosis. At that time there was ongoing extracranial disease control.

11.
Case Rep Oncol ; 12(2): 625-630, 2019.
Article in English | MEDLINE | ID: mdl-31543779

ABSTRACT

Epidermal growth factor receptor (EGFR)-targeted therapy has become standard of care in advanced stages EGFR-mutant non-small cell lung cancer. Acquired resistance to first-line EGFR-tyrosine kinase inhibitor (TKI) and subsequent disease progression is a common problem and mostly due to a secondary mutation (T790M) in EGFR. We report a case of a patient with EGFR-mutated lung adenocarcinoma who developed a complex resistance profile: T790M mutation, HER2 mutation and HER2 amplification after first-line EGFR-TKI. This patient was safely treated with a combination of osimertinib and trastuzumab and achieved a clinically meaningful and clear molecular response. This is the first reported case of acquired resistance to first-line EGFR-TKI based on three resistance mechanisms, treated with molecular targeted combination therapy.

12.
Methods Mol Biol ; 1908: 73-87, 2019.
Article in English | MEDLINE | ID: mdl-30649722

ABSTRACT

Large-scale tumor profiling studies have generated massive amounts of data that have been instrumental for the detection of recurrent driver mutations in many tumor types. These driver mutations as well as the concurrent passenger mutations are now being used for a more accurate diagnosis of the tumor and prognosis for the patient. Moreover, therapeutic inhibitors toward specific mutations are already on the market and many clinical trials are ongoing to approve novel therapeutic drugs. The broad-range identification of these somatic mutations is key to this tailored personalized medicine approach, which preferentially has to be performed by a multigene multihotspot method such as massive parallel sequencing, also called next generation sequencing (NGS). The implementation of NGS in molecular diagnostics of tumor profiling however, requires a firm validation to minimize the occurrence of false positives and false negatives, thereby yielding highly accurate and robust clinical data.Here, we describe the different performance characteristics as well as quality metrics that should be analyzed for the robust diagnostic validation of tumor profiling in order to meet the requirements of international standards specific for medical laboratories, such as the ISO15189:2012 standard. These metrics include assays that assess the precision, limit of detection, accuracy, sensitivity, specificity, and robustness of the entire workflow from DNA enrichment up to the final report.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Mutation , Neoplasms/genetics , Sequence Analysis, DNA/methods , Data Accuracy , High-Throughput Nucleotide Sequencing/standards , Humans , Paraffin Embedding , Sensitivity and Specificity , Sequence Analysis, DNA/standards , Tissue Fixation
13.
Biopreserv Biobank ; 17(4): 274-281, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30412415

ABSTRACT

Biobanking is increasingly important in studying complex heterogeneous diseases. Therefore, it is essential to ensure the sample quality after long-term storage for reliable downstream analyses. The Clinical Biobank of the Jessa Hospital and the University Biobank Limburg (UBiLim) hold a continuously growing collection of hematological samples, including May-Grünwald-Giemsa (MGG)- and Perls' Prussian Blue (PPB)-stained bone marrow (BM) smears, stored at room temperature (RT) for up to 20 years. In this study, we investigated the effect of short- and long-term storage on the quality of DNA and RNA extracted from these BM smears to assess their fitness-for-purpose in downstream molecular applications, including agarose gel electrophoresis, bio-analyzer analysis, quantitative polymerase chain reaction (qPCR), and targeted next-generation sequencing (NGS). The RNA quality was very low for all samples, independent of storage time or staining method. The DNA from PPB-stained BM smears was already degraded after 1 year of storage and correspondingly could not be used for reliable downstream molecular analysis. In contrast, DNA extracted from MGG-stained BM smears stored for up to 10 years was able to generate high-quality data in qPCR and targeted NGS analyses. Longer storage periods (>15 years) of these samples revealed a high degree of degradation and a significant amount of DNA transitions and transversions. In conclusion, the DNA extracted from archival MGG-stained BM smears with a storage time up to at least 10 years was qualitatively good and fit for downstream analysis, including targeted NGS. This indicates that these samples are an eligible source for molecular DNA research and for studying complex diseases.


Subject(s)
Biological Specimen Banks , Bone Marrow/metabolism , Eosine Yellowish-(YS)/metabolism , Methylene Blue/metabolism , DNA/metabolism , Humans , Quality Control , RNA/metabolism
14.
Ann Hematol ; 97(7): 1219-1227, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29492600

ABSTRACT

High-count monoclonal B cell lymphocytosis (MBL) with a chronic lymphocytic leukemia (CLL) phenotype is a well-known entity, featuring 1-4% annual risk of progression towards CLL requiring treatment. Lymphoma-like MBL (L-MBL), on the other hand, remains poorly defined and data regarding outcome are lacking. We retrospectively evaluated 33 L-MBL cases within our hospital population and compared them to 95 subjects with CLL-like MBL (C-MBL). Diagnoses of L-MBL were based on asymptomatic B cell clones with Matutes score < 3, B cells < 5.0 × 103/µl, and negative computerized tomography scans. We found that median B cell counts were considerably lower compared to C-MBL (0.6 vs 2.3 × 103/µl) and remained stable over time. Based on immunophenotyping and immunogenetic profiling, most L-MBL clones did not correspond to known lymphoma entities. A strikingly high occurrence of paraproteinemia (48%), hypogammaglobulinemia (45%), and biclonality (21%) was seen; these incidences being significantly higher than in C-MBL (17, 21, and 5%, respectively). Unrelated monoclonal gammopathy of undetermined significance was a frequent feature, as the light chain type of 5/12 paraproteins detected was different from the clonal surface immunoglobulin. After 46-month median follow-up, 2/24 patients (8%) had progressed towards indolent lymphoma requiring no treatment. In contrast, 41% of C-MBL cases evolved to CLL and 17% required treatment. We conclude that clinical L-MBL is characterized by pronounced immune dysregulation and very slow or absent progression, clearly separating it from its CLL-like counterpart.


Subject(s)
B-Lymphocytes/pathology , Lymphocytosis/pathology , Lymphoma, B-Cell/pathology , Agammaglobulinemia/pathology , Aged , Aged, 80 and over , CD5 Antigens/analysis , Clone Cells/pathology , Diagnosis, Differential , Disease Progression , Female , Follow-Up Studies , Gene Rearrangement, B-Lymphocyte, Heavy Chain , Humans , Immunophenotyping , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphocytosis/classification , Lymphocytosis/diagnosis , Male , Middle Aged , Monoclonal Gammopathy of Undetermined Significance/complications , Paraproteinemias/pathology , Paraproteins/analysis , Preleukemia/pathology , Prognosis , Receptors, IgE/analysis , Retrospective Studies
15.
Clin Lymphoma Myeloma Leuk ; 18(4): 235-248, 2018 04.
Article in English | MEDLINE | ID: mdl-29506935

ABSTRACT

Multiple myeloma (MM), characterized by malignant plasma cells in the bone marrow, is consistently preceded by asymptomatic premalignant stage monoclonal gammopathy of undetermined significance (MGUS). These MGUS patients have an annual risk of 1% to progress to MM. Clinical, imaging, and genomic (genetic and epigenetic) factors were identified, whose presence increased the risk of progression from MGUS to MM. In this systematic review we summarize the currently identified clinical, imaging, and genomic biomarkers suggested to increase the progression risk or shown to be differentially expressed/present between both cohorts of patients. Despite the wide range of proposed markers, there are still no reliable biomarkers to individually predict which MGUS patient will progress to MM and which will not. Research on biomarkers in the progression from MGUS to MM will give more insight in the unknown pathogenesis of this hematological malignancy. This would improve research by elucidating new pathways and potential therapeutic targets as well as clinical management by closer follow-up and earlier treatment of high-risk MGUS patients.


Subject(s)
Biomarkers, Tumor/analysis , Monoclonal Gammopathy of Undetermined Significance/diagnosis , Monoclonal Gammopathy of Undetermined Significance/pathology , Multiple Myeloma/diagnosis , Multiple Myeloma/pathology , Disease Progression , Humans , Prognosis
16.
PLoS One ; 11(4): e0154038, 2016.
Article in English | MEDLINE | ID: mdl-27101000

ABSTRACT

The inevitable switch from standard molecular methods to next-generation sequencing for the molecular profiling of tumors is challenging for most diagnostic laboratories. However, fixed validation criteria for diagnostic accreditation are not in place because of the great variability in methods and aims. Here, we describe the validation of a custom panel of hotspots in 24 genes for the detection of somatic mutations in non-small cell lung carcinoma, colorectal carcinoma and malignant melanoma starting from FFPE sections, using 14, 36 and 5 cases, respectively. The targeted hotspots were selected for their present or future clinical relevance in solid tumor types. The target regions were enriched with the TruSeq approach starting from limited amounts of DNA. Cost effective sequencing of 12 pooled libraries was done using a micro flow cell on the MiSeq and subsequent data analysis with MiSeqReporter and VariantStudio. The entire workflow was diagnostically validated showing a robust performance with maximal sensitivity and specificity using as thresholds a variant allele frequency >5% and a minimal amplicon coverage of 300. We implemented this method through the analysis of 150 routine diagnostic samples and identified clinically relevant mutations in 16 genes including KRAS (32%), TP53 (32%), BRAF (12%), APC (11%), EGFR (8%) and NRAS (5%). Importantly, the highest success rate was obtained when using also the low quality DNA samples. In conclusion, we provide a workflow for the validation of targeted NGS by a custom-designed pan-solid tumor panel in a molecular diagnostic lab and demonstrate its robustness in a clinical setting.


Subject(s)
High-Throughput Nucleotide Sequencing , Mutation , Neoplasms/diagnosis , Humans , Limit of Detection , Neoplasms/genetics , Reproducibility of Results , Sensitivity and Specificity
17.
PLoS One ; 9(1): e85851, 2014.
Article in English | MEDLINE | ID: mdl-24416450

ABSTRACT

The transcription factor FOXP1 is implicated in the pathogenesis of B-cell lymphomas through chromosomal translocations involving either immunoglobulin heavy chain (IGH) locus or non-IG sequences. The former translocation, t(3;14)(p13;q32), results in dysregulated expression of FOXP1 juxtaposed with strong regulatory elements of IGH. Thus far, molecular consequences of rare non-IG aberrations of FOXP1 remain undetermined. Here, using molecular cytogenetics and molecular biology studies, we comprehensively analyzed four lymphoma cases with non-IG rearrangements of FOXP1 and compared these with cases harboring t(3;14)(p13;q32)/IGH-FOXP1 and FOXP1-expressing lymphomas with no apparent structural aberrations of the gene. Our study revealed that non-IG rearrangements of FOXP1 are usually acquired during clinical course of various lymphoma subtypes, including diffuse large B cell lymphoma, marginal zone lymphoma and chronic lymphocytic leukemia, and correlate with a poor prognosis. Importantly, these aberrations constantly target the coding region of FOXP1, promiscuously fusing with coding and non-coding gene sequences at various reciprocal breakpoints (2q36, 10q24 and 3q11). The non-IG rearrangements of FOXP1, however, do not generate functional chimeric genes but commonly disrupt the full-length FOXP1 transcript leading to an aberrant expression of N-truncated FOXP1 isoforms (FOXP1(NT)), as shown by QRT-PCR and Western blot analysis. In contrast, t(3;14)(p13;q32)/IGH-FOXP1 affects the 5' untranslated region of FOXP1 and results in overexpress the full-length FOXP1 protein (FOXP1(FL)). RNA-sequencing of a few lymphoma cases expressing FOXP1(NT) and FOXP1(FL) detected neither FOXP1-related fusions nor FOXP1 mutations. Further bioinformatic analysis of RNA-sequencing data retrieved a set of genes, which may comprise direct or non-direct targets of FOXP1(NT), potentially implicated in disease progression. In summary, our findings point to a dual mechanism through which FOXP1 is implicated in B-cell lymphomagenesis. We hypothesize that the primary t(3;14)(p13;q32)/IGH-FOXP1 activates expression of the FOXP1(FL) protein with potent oncogenic activity, whereas the secondary non-IG rearrangements of FOXP1 promote expression of the FOXP1(NT) proteins, likely driving progression of disease.


Subject(s)
Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Genes, Immunoglobulin Heavy Chain , Lymphoma, B-Cell/genetics , Repressor Proteins/genetics , Chromosome Breakage , Chromosomes, Human, Pair 3/genetics , Forkhead Transcription Factors/metabolism , Gene Regulatory Networks/genetics , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Karyotyping , Lymphoma, B-Cell/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Proteasome Endopeptidase Complex/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/metabolism , Sequence Analysis, RNA
18.
Haematologica ; 97(8): 1272-7, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22371180

ABSTRACT

The European Myeloma Network has organized two workshops on fluorescence in situ hybridization in multiple myeloma. The first aimed to identify specific indications and consensus technical approaches of current practice. A second workshop followed a quality control exercise in which 21 laboratories analyzed diagnostic cases of purified plasma cells for recurrent abnormalities. The summary report was discussed at the EHA Myeloma Scientific Working Group Meeting 2010. During the quality control exercise, there was acceptable agreement on more than 1,000 tests. The conclusions from the exercise were that the primary clinical applications for FISH analysis were for newly diagnosed cases of MM or frank relapse cases. A range of technical recommendations included: 1) material should be part of the first draw of the aspirate; 2) samples should be sent at suitable times to allow for the lengthy processing procedure; 3) most importantly, PCs must be purified or specifically identified; 4) positive cut-off levels should be relatively conservative: 10% for fusion or break-apart probes, 20% for numerical abnormalities; 5) informative probes should be combined to best effect; 6) in specialist laboratories, a single experienced analyst is considered adequate; 7) at least 100 PC should be scored; 8) essential abnormalities to test for are t(4;14), t(14;16) and 17p13 deletions; 9) suitable commercial probes should be available for clinically relevant abnormalities; 10) the clinical report should be expressed clearly and must state the percentage of PC involved and the method used for identification; 11) a retrospective European based FISH data bank linked to clinical data should be generated; and 12) prospective analysis should be centralized for upcoming trials based on the recommendations made. The European Myeloma Network aims to build on these recommendations to establish standards for a common European data base to define subgroups with prognostic significance.


Subject(s)
In Situ Hybridization, Fluorescence/standards , Multiple Myeloma/diagnosis , Humans , In Situ Hybridization, Fluorescence/methods , Practice Guidelines as Topic
19.
World J Gastrointest Oncol ; 3(2): 24-32, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21364843

ABSTRACT

AIM: To investigate how t(11;18)(q21;q21)-positive gastrointestinal MALT lymphomas relate to other marginal zone lymphomas with respect to the somatic mutation pattern of the V(H) genes and the expression of the marker CD27. METHODS: The V(H) gene of 7 t(11;18)(q21;q21)-positive gastrointestinal MALT lymphomas was amplified by PCR using family specific V(H) primers and a consensus J(H) primer. PCR products were sequenced and mutation analysis of the CDR and the FR regions was performed. All cases were immunostained for CD27. RESULTS: One case showed unmutated V(H) genes while the others showed mutated V(H) genes with mutation frequencies ranging from 1.3 to 14.7% and with evidence of antigen selection in 2 cases. These data suggest that the translocation t(11;18)(q21;q21) can target either B-cells at different stages of differentiation or naive B-cells that retain the capacity to differentiate upon antigen stimulation. All cases but one displayed weak to strong CD27 expression which did not correlate with the V(H) gene mutation status. CONCLUSION: t(11;18)(q21;q21)-positive gastrointestinal MALT lymphomas are heterogeneous with respect to the V(H) mutation status and CD27 is not a marker of somatically mutated B-cells.

20.
J Clin Lab Anal ; 23(3): 145-51, 2009.
Article in English | MEDLINE | ID: mdl-19455629

ABSTRACT

Real-time polymerase chain reaction (PCR) is a frequently used technique in molecular diagnostics. To date, practical guidelines for the complete process of optimization and validation of commercial and in-house developed molecular diagnostic methods are scare. Therefore, we propose a practical guiding principle for the optimization and validation of real-time PCR assays. Based on literature, existing guidelines, and personal experience, we created a checklist that can be used in different steps of the development and validation process of commercial and in-house developed real-time PCR assays. Furthermore, determination of target values and reproducibility of internal quality controls are included, which allows a statistical follow-up of the performance of the assay. Recently, we used this checklist for the development of various qualitative and quantitative assays for microbiological and hematological applications, for which accreditation according to ISO 15189:2007 was obtained. In our experience, the use of the proposed guidelines leads to a more efficient and standardized optimization and validation. Ultimately, this results in reliable and robust molecular diagnostics. The proposed checklist is independent of environment, equipment, and specific applications and can be used in other laboratories. A worldwide consensus on this kind of checklist should be aimed at.


Subject(s)
Molecular Diagnostic Techniques/standards , Polymerase Chain Reaction/standards , Analytic Sample Preparation Methods , Calibration , Data Interpretation, Statistical , Genes/genetics , Oligonucleotide Probes/genetics , Quality Control , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...