Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Curr Treat Options Oncol ; 25(6): 769-783, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713268

ABSTRACT

OPINION STATEMENT: Pathogenic germline variants in the setting of several associated cancer predisposition syndromes (CPS) may lead to the development of sarcoma. We would consider testing for a CPS in patients with a strong family history of cancer, multiple primary malignancies, and/or pediatric/adolescent/young adult patients diagnosed with other malignancies strongly associated with CPS. When a CPS is diagnosed in a patient with sarcoma, additional treatment considerations and imaging options for those patients are required. This applies particularly to the use of radiation therapy, ionizing radiation with diagnostic imaging, and the use of alkylating chemotherapy. As data and guidelines are currently lacking for many of these scenarios, we have adopted a shared decision-making process with patients and their families. If the best chance for cure in a patient with CPS requires utilization of radiation therapy or alkylating chemotherapy, we discuss the risks with the patient but do not omit these modalities. However, if there are treatment options that yield equivalent survival rates, yet avoid these modalities, we elect for those options. Considering staging imaging and post-therapy evaluation for sarcoma recurrence, we avoid surveillance techniques that utilize ionizing radiation when possible but do not completely omit them when their use is indicated.


Subject(s)
Genetic Predisposition to Disease , Sarcoma , Humans , Sarcoma/diagnosis , Sarcoma/therapy , Sarcoma/genetics , Sarcoma/etiology , Germ-Line Mutation , Genetic Testing , Disease Management , Clinical Decision-Making , Combined Modality Therapy/adverse effects
2.
Res Sq ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798617

ABSTRACT

Background: Li-Fraumeni syndrome (LFS) is an inherited cancer predisposition syndrome with an estimated prevalence of 1 in 3,000-5,000 individuals. LFS poses a significant cancer risk throughout the lifespan, with notable cancer susceptibility in childhood. Despite being predominantly inherited, up to 20% of cases arise de novo. Surveillance protocols facilitate the reduction of mortality and morbidity through early cancer detection. While newborn screening (NBS) has proven effective in identifying newborns with rare genetic conditions, even those occurring as rarely as 1 in 185,000, its potential for detecting inherited cancer predispositions remains largely unexplored. Methods: This survey-based study investigates perspectives toward NBS for LFS among individuals with and parents of children with LFS receiving care at single comprehensive cancer center in the U.S. Results: All participants unanimously supported NBS for LFS (n = 24). Reasons included empowerment (83.3%), control (66.7%), and peace of mind (54.2%), albeit with concerns about anxiety (62.5%) and devastation (50%) related to receiving positive results. Participants endorsed NBS as beneficial for cancer detection and prevention (91.7%), research efforts (87.5%), and family planning (79.2%) but voiced apprehensions about the financial cost of cancer surveillance (62.5%), emotional burdens (62.5%), and insurance coverage and discrimination (54.2%). Approximately 83% of respondents believed that parental consent should be required to screen newborns for LFS. Conclusion: This study revealed strong support for NBS for LFS despite the recognition of various perceived benefits and risks. These findings underscore the complex interplay between clinical, psychosocial, and ethical factors in considering NBS for LFS from the perspective of the LFS community.

3.
J Clin Oncol ; 41(25): 4087-4092, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37311171

ABSTRACT

The Oncology Grand Rounds series is designed to place original reports published in the Journal into clinical context. A case presentation is followed by a description of diagnostic and management challenges, a review of the relevant literature, and a summary of the authors' suggested management approaches. The goal of this series is to help readers better understand how to apply the results of key studies, including those published in Journal of Clinical Oncology, to patients seen in their own clinical practice. BACKGROUND: The Children's Oncology Group (COG) AALL1331 trial demonstrated improved survival and less toxicity in children with high-/intermediate-risk relapsed ALL receiving blinatumomab compared with intensive chemotherapy before hematopoietic stem-cell transplant (HSCT). The low-risk arm of AALL1331 compared addition of three cycles of blinatumomab to chemotherapy alone, but a survival improvement was not noted. Secondary analyses showed improvement in disease-free survival (DFS) and overall survival (OS) of low-risk patients with bone marrow disease ± extramedullary (EM) involvement (4-year DFS 72.7% ± 5.8% v 53.7% ± 6.7%; 4-year OS 97.1% ± 2.1% v 84.8% ± 4.8%), but failed to show an advantage with blinatumomab for patients with isolated EM relapse. Of note, DFS of isolated CNS (iCNS) relapse was worse than previous studies at 24% on both arms, likely because of decreases in CNS-intensive therapy compared with previous approaches and inadequacy of blinatumomab for controlling CNS disease. CASE: Our case of late isolated CNS B-cell ALL relapse outlines challenges for clinicians attempting to decrease toxicity and avoid HSCT: (1) defining of low risk appropriately, (2) attempting to reduce the treatment burden of past protocols, and (3) understanding approach and timing of cranial irradiation. APPROACH: Although AALL1331 therapy without blinatumomab leads to excellent survival in patients with isolated testicular relapse, we recommend a modified AALL02P2 backbone of chemotherapy with 1,800 cGy cranial radiotherapy for patients with late iCNS relapse. Future studies integrating chimeric antigen receptor T cells, which have better CNS penetration, may help decrease the intensive treatment burden for patients with late iCNS recurrence.


Subject(s)
Antibodies, Bispecific , Neoplasm Recurrence, Local , Child , Humans , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/chemically induced , Disease-Free Survival , Antibodies, Bispecific/adverse effects
4.
Am J Med Genet A ; 191(5): 1434-1441, 2023 05.
Article in English | MEDLINE | ID: mdl-36815775

ABSTRACT

Severe congenital neutropenia (SCN) is a rare disorder, often due to pathogenic variants in genes such as ELANE, HAX1, and SBDS. SRP54 pathogenic variants are associated with SCN and Shwachman-Diamond-like syndrome. Thirty-eight patients with SRP54-related SCN are reported in the literature. We present an infant with SCN, without classic Shwachman-Diamond syndrome features, who presented with recurrent bacterial infections and an SRP54 (c.349_351del) pathogenic variant. Despite ongoing granulocyte colony-stimulating factor therapy, this patient has no evidence of malignant transformation. Here we establish a framework for the future development of universal guidelines to care for this patient population.


Subject(s)
Neutropenia , Infant , Humans , Virulence , Mutation , Neutropenia/genetics , Neutropenia/pathology , Congenital Bone Marrow Failure Syndromes/genetics , Shwachman-Diamond Syndrome , Signal Recognition Particle/genetics , Adaptor Proteins, Signal Transducing/genetics
5.
JCO Precis Oncol ; 6: e2200390, 2022 11.
Article in English | MEDLINE | ID: mdl-36446043

ABSTRACT

PURPOSE: Multiple FGFR inhibitors are currently in clinical trials enrolling adults with different solid tumors, while very few enroll pediatric patients. We determined the types and frequency of FGFR alterations (FGFR1-4) in pediatric cancers to inform future clinical trial design. METHODS: Tumors with FGFR alterations were identified from two large cohorts of pediatric solid tumors subjected to targeted DNA sequencing: The Dana-Farber/Boston Children's Profile Study (n = 888) and the multi-institution GAIN/iCAT2 (Genomic Assessment Improves Novel Therapy) Study (n = 571). Data from the combined patient population of 1,395 cases (64 patients were enrolled in both studies) were reviewed and cases in which an FGFR alteration was identified by OncoPanel sequencing were further assessed. RESULTS: We identified 41 patients with tumors harboring an oncogenic FGFR alteration. Median age at diagnosis was 8 years (range, 6 months-26 years). Diagnoses included 11 rhabdomyosarcomas, nine low-grade gliomas, and 17 other tumor types. Alterations included gain-of-function sequence variants (n = 19), amplifications (n = 10), oncogenic fusions (FGFR3::TACC3 [n = 3], FGFR1::TACC1 [n = 1], FGFR1::EBF2 [n = 1], FGFR1::CLIP2 [n = 1], and FGFR2::CTNNA3 [n = 1]), pathogenic-leaning variants of uncertain significance (n = 4), and amplification in combination with a pathogenic-leaning variant of uncertain significance (n = 1). Two novel FGFR1 fusions in two different patients were identified in this cohort, one of whom showed a response to an FGFR inhibitor. CONCLUSION: In summary, activating FGFR alterations were found in approximately 3% (41/1,395) of pediatric solid tumors, identifying a population of children with cancer who may be eligible and good candidates for trials evaluating FGFR-targeted therapy. Importantly, the genomic and clinical data from this study can help inform drug development in accordance with the Research to Accelerate Cures and Equity for Children Act.


Subject(s)
Brain Neoplasms , Glioma , Child , Humans , Base Sequence , Brain Neoplasms/genetics , Carcinogenesis , Microtubule-Associated Proteins , Oncogenes , Protein Kinase Inhibitors
6.
Eur Urol ; 81(3): 243-250, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34863587

ABSTRACT

BACKGROUND: Inherited germline TP53 pathogenic and likely pathogenic variants (gTP53) cause autosomal dominant multicancer predisposition including Li-Fraumeni syndrome (LFS). However, there is no known association of prostate cancer with gTP53. OBJECTIVE: To determine whether gTP53 predisposes to prostate cancer. DESIGN, SETTING, AND PARTICIPANTS: This multi-institutional retrospective study characterizes prostate cancer incidence in a cohort of LFS males and gTP53 prevalence in a prostate cancer cohort. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We evaluated the spectrum of gTP53 variants and clinical features associated with prostate cancer. RESULTS AND LIMITATIONS: We identified 31 prostate cancer cases among 163 adult LFS males, including 26 of 54 aged ≥50 yr. Among 117 LFS males without prostate cancer at the time of genetic testing, six were diagnosed with prostate cancer over a median (interquartile range [IQR]) of 3.0 (1.3-7.2) yr of follow-up, a 25-fold increased risk (95% confidence interval [CI] 9.2-55; p < 0.0001). We identified gTP53 in 38 of 6850 males (0.6%) in the prostate cancer cohort, a relative risk 9.1-fold higher than that of population controls (95% CI 6.2-14; p < 0.0001; gnomAD). We observed hotspots at the sites of attenuated variants not associated with classic LFS. Two-thirds of available gTP53 prostate tumors had somatic inactivation of the second TP53 allele. Among gTP53 prostate cancer cases in this study, the median age at diagnosis was 56 (IQR: 51-62) yr, 44% had Gleason ≥8 tumors, and 29% had advanced disease at diagnosis. CONCLUSIONS: Complementary analyses of prostate cancer incidence in LFS males and gTP53 prevalence in prostate cancer cohorts suggest that gTP53 predisposes to aggressive prostate cancer. Prostate cancer should be considered as part of LFS screening protocols and TP53 considered in germline prostate cancer susceptibility testing. PATIENT SUMMARY: Inherited pathogenic variants in the TP53 gene are likely to predispose men to aggressive prostate cancer.


Subject(s)
Li-Fraumeni Syndrome , Prostatic Neoplasms , Adult , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Li-Fraumeni Syndrome/epidemiology , Li-Fraumeni Syndrome/genetics , Li-Fraumeni Syndrome/pathology , Male , Middle Aged , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , Retrospective Studies , Tumor Suppressor Protein p53/genetics
7.
JAMA Oncol ; 7(10): 1521-1528, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34410295

ABSTRACT

IMPORTANCE: Alterations in the IKZF1 gene drive B-cell acute lymphoblastic leukemia (B-ALL) but are not routinely used to stratify patients by risk because of inconsistent associations with outcomes. We describe a novel deletion in 22q11.22 that was consistently associated with very poor outcomes in patients with B-ALL with IKZF1 alterations. OBJECTIVE: To determine whether focal deletions within the λ variable chain region in chromosome 22q11.22 were associated with patients with B-ALL with IKZF1 alterations with the highest risk of relapse and/or death. DESIGN, SETTING, AND PARTICIPANTS: This cohort study included 1310 primarily high-risk pediatric patients with B-ALL who were taken from 6 independent clinical cohorts, consisting of 3 multicenter cohorts (AALL0232 [2004-2011], P9906 [2000-2003], and patients with Down syndrome who were pooled from national and international studies) and 3 single-institution cohorts (University of Utah [Salt Lake City], Children's Hospital of Philadelphia [Philadelphia, Pennsylvania], and St. Jude Children's Hospital [Memphis, Tennessee]). Data analysis began in 2011 using patients from the older studies first, and data analysis concluded in 2021. EXPOSURES: Focal 22q11.22 deletions. MAIN OUTCOMES AND MEASURES: Event-free and overall survival was investigated. The hypothesis that 22q11.22 deletions stratified the prognostic effect of IKZF1 alterations was formulated while investigating nearby deletions in VPREB1 in 2 initial cohorts (n = 270). Four additional cohorts were then obtained to further study this association (n = 1040). RESULTS: This study of 1310 patients with B-ALL (717 male [56.1%] and 562 female patients [43.9%]) found that focal 22q11.22 deletions are frequent (518 of 1310 [39.5%]) in B-ALL and inconsistent with physiologic V(D)J recombination. A total of 299 of 1310 patients with B-ALL had IKZF1 alterations. Among patients with IKZF1 alterations, more than half shared concomitant focal 22q11.22 deletions (159 of 299 [53.0%]). Patients with combined IKZF1 alterations and 22q11.22 deletions had worse outcomes compared with patients with IKZF1 alterations and wild-type 22q11.22 alleles in every cohort examined (combined cohorts: 5-year event-free survival rates, 43.3% vs 68.5%; hazard ratio [HR], 2.18; 95% CI, 1.54-3.07; P < .001; 5-year overall survival rates, 66.9% vs 83.9%; HR, 2.05; 95% CI, 1.32-3.21; P = .001). While 22q11.22 deletions were not prognostic in patients with wild-type IKZF1 , concomitant 22q11.22 deletions in patients with IKZF1 alterations stratified outcomes across additional risk groups, including patients who met the IKZF1plus criteria, and maintained independent significance in multivariate analysis for event-free survival (HR, 2.05; 95% CI, 1.27-3.29; P = .003) and overall survival (HR, 1.83; 95% CI, 1.01-3.34; P = .05). CONCLUSIONS AND RELEVANCE: This cohort study suggests that 22q11.22 deletions identify patients with B-ALL and IKZF1 alterations who have very poor outcomes and may offer a new genetic biomarker to further refine B-ALL risk stratification and treatment strategies.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Cohort Studies , Female , Gene Deletion , Humans , Ikaros Transcription Factor/genetics , Male , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis
8.
Article in English | MEDLINE | ID: mdl-34095712

ABSTRACT

Rhabdomyosarcoma (RMS) is the most common pediatric soft-tissue sarcoma and accounts for 3% of all pediatric cancer. In this study, we investigated germline sequence and structural variation in a broad set of genes in two large, independent RMS cohorts. MATERIALS AND METHODS: Genome sequencing of the discovery cohort (n = 273) and exome sequencing of the secondary cohort (n = 121) were conducted on germline DNA. Analyses were performed on 130 cancer susceptibility genes (CSG). Pathogenic or likely pathogenic (P/LP) variants were predicted using the American College of Medical Genetics and Genomics (ACMG) criteria. Structural variation and survival analyses were performed on the discovery cohort. RESULTS: We found that 6.6%-7.7% of patients with RMS harbored P/LP variants in dominant-acting CSG. An additional approximately 1% have structural variants (ATM, CDKN1C) in CSGs. CSG variants did not influence survival, although there was a significant correlation with an earlier age of tumor onset. There was a nonsignificant excess of P/LP variants in dominant inheritance genes in the patients with FOXO1 fusion-negative RMS patients versus the patients with FOXO1 fusion-positive RMS. We identified pathogenic germline variants in CSGs previously (TP53, NF1, DICER1, mismatch repair genes), rarely (BRCA2, CBL, CHEK2, SMARCA4), or never (FGFR4) reported in RMS. Numerous genes (TP53, BRCA2, mismatch repair) were on the ACMG Secondary Findings 2.0 list. CONCLUSION: In two cohorts of patients with RMS, we identified pathogenic germline variants for which gene-specific therapies and surveillance guidelines may be beneficial. In families with a proband with an RMS-risk P/LP variant, genetic counseling and cascade testing should be considered, especially for ACMG Secondary Findings genes and/or with gene-specific surveillance guidelines.


Subject(s)
Genetic Predisposition to Disease , Rhabdomyosarcoma/genetics , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Genetic Variation , Germ Cells , Humans , Infant , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...