Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2111, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454000

ABSTRACT

Investigative exploration and foraging leading to food consumption have vital importance, but are not well-understood. Since GABAergic inputs to the lateral and ventrolateral periaqueductal gray (l/vlPAG) control such behaviors, we dissected the role of vgat-expressing GABAergic l/vlPAG cells in exploration, foraging and hunting. Here, we show that in mice vgat l/vlPAG cells encode approach to food and consumption of both live prey and non-prey foods. The activity of these cells is necessary and sufficient for inducing food-seeking leading to subsequent consumption. Activation of vgat l/vlPAG cells produces exploratory foraging and compulsive eating without altering defensive behaviors. Moreover, l/vlPAG vgat cells are bidirectionally interconnected to several feeding, exploration and investigation nodes, including the zona incerta. Remarkably, the vgat l/vlPAG projection to the zona incerta bidirectionally controls approach towards food leading to consumption. These data indicate the PAG is not only a final downstream target of top-down exploration and foraging-related inputs, but that it also influences these behaviors through a bottom-up pathway.


Subject(s)
Periaqueductal Gray , Mice , Animals , Periaqueductal Gray/physiology
2.
Eur J Neurosci ; 57(7): 1053-1067, 2023 04.
Article in English | MEDLINE | ID: mdl-36788059

ABSTRACT

In the face of imminent predatory danger, animals quickly detect the threat and mobilize key survival defensive actions, such as escape and freezing. The dorsomedial portion of the ventromedial hypothalamus (VMH) is a central node in innate and conditioned predator-induced defensive behaviours. Prior studies have shown that activity of steroidogenic factor 1 (sf1)-expressing VMH cells is necessary for such defensive behaviours. However, sf1-VMH neural activity during exposure to predatory threats has not been well characterized. Here, we use single-cell recordings of calcium transients from VMH cells in male and female mice. We show this region is activated by threat proximity and that it encodes future occurrence of escape but not freezing. Our data also show that VMH cells encoded proximity of an innate predatory threat but not a fear-conditioned shock grid. Furthermore, chemogenetic activation of the VMH increases avoidance of innate threats, such as open spaces and a live predator. This manipulation also increased freezing towards the predator, without altering defensive behaviours induced by a shock grid. Lastly, we show that optogenetic VMH activation recruited a broad swath of regions, suggestive of widespread changes in neural defensive state. Taken together, these data reveal the neural dynamics of the VMH during predator exposure and further highlight its role as a critical component of the hypothalamic predator defense system.


Subject(s)
Fear , Hypothalamus , Male , Female , Mice , Animals , Hypothalamus/physiology , Fear/physiology , Ventromedial Hypothalamic Nucleus
3.
Elife ; 112022 06 08.
Article in English | MEDLINE | ID: mdl-35674316

ABSTRACT

During threat exposure, survival depends on defensive reactions. Prior works linked large glutamatergic populations in the midbrain periaqueductal gray (PAG) to defensive freezing and flight, and established that the overarching functional organization axis of the PAG is along anatomically-defined columns. Accordingly, broad activation of the dorsolateral column induces flight, while activation of the lateral or ventrolateral (l and vl) columns induces freezing. However, the PAG contains diverse cell types that vary in neurochemistry. How these cell types contribute to defense remains unknown, indicating that targeting sparse, genetically-defined populations may reveal how the PAG generates diverse behaviors. Though prior works showed that broad excitation of the lPAG or vlPAG causes freezing, we found in mice that activation of lateral and ventrolateral PAG (l/vlPAG) cholecystokinin-expressing (CCK) cells selectively caused flight to safer regions within an environment. Furthermore, inhibition of l/vlPAG-CCK cells reduced predator avoidance without altering other defensive behaviors like freezing. Lastly, l/vlPAG-CCK activity decreased when approaching threat and increased during movement to safer locations. These results suggest CCK cells drive threat avoidance states, which are epochs during which mice increase distance from threat and perform evasive escape. Conversely, l/vlPAG pan-neuronal activation promoted freezing, and these cells were activated near threat. Thus, CCK l/vlPAG cells have opposing function and neural activation motifs compared to the broader local ensemble defined solely by columnar boundaries. In addition to the anatomical columnar architecture of the PAG, the molecular identity of PAG cells may confer an additional axis of functional organization, revealing unexplored functional heterogeneity.


Subject(s)
Fear , Periaqueductal Gray , Animals , Cholecystokinin , Fear/physiology , Mice , Neurons/physiology , Periaqueductal Gray/physiology
4.
Sci Rep ; 12(1): 10310, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725588

ABSTRACT

The CA1 region of the hippocampus contains both glutamatergic pyramidal cells and GABAergic interneurons. Numerous reports have characterized glutamatergic CAMK2A cell activity, showing how these cells respond to environmental changes such as local cue rotation and context re-sizing. Additionally, the long-term stability of spatial encoding and turnover of these cells across days is also well-characterized. In contrast, these classic hippocampal experiments have never been conducted with CA1 GABAergic cells. Here, we use chronic calcium imaging of male and female mice to compare the neural activity of VGAT and CAMK2A cells during exploration of unaltered environments and also during exposure to contexts before and after rotating and changing the length of the context across multiple recording days. Intriguingly, compared to CAMK2A cells, VGAT cells showed decreased remapping induced by environmental changes, such as context rotations and contextual length resizing. However, GABAergic neurons were also less likely than glutamatergic neurons to remain active and exhibit consistent place coding across recording days. Interestingly, despite showing significant spatial remapping across days, GABAergic cells had stable speed encoding between days. Thus, compared to glutamatergic cells, spatial encoding of GABAergic cells is more stable during within-session environmental perturbations, but is less stable across days. These insights may be crucial in accurately modeling the features and constraints of hippocampal dynamics in spatial coding.


Subject(s)
GABAergic Neurons , Interneurons , Animals , CA1 Region, Hippocampal/physiology , Female , GABAergic Neurons/physiology , Hippocampus/physiology , Interneurons/physiology , Male , Mice , Pyramidal Cells/physiology
5.
Elife ; 102021 09 01.
Article in English | MEDLINE | ID: mdl-34468312

ABSTRACT

Escape from threats has paramount importance for survival. However, it is unknown if a single circuit controls escape vigor from innate and conditioned threats. Cholecystokinin (cck)-expressing cells in the hypothalamic dorsal premammillary nucleus (PMd) are necessary for initiating escape from innate threats via a projection to the dorsolateral periaqueductal gray (dlPAG). We now show that in mice PMd-cck cells are activated during escape, but not other defensive behaviors. PMd-cck ensemble activity can also predict future escape. Furthermore, PMd inhibition decreases escape speed from both innate and conditioned threats. Inhibition of the PMd-cck projection to the dlPAG also decreased escape speed. Intriguingly, PMd-cck and dlPAG activity in mice showed higher mutual information during exposure to innate and conditioned threats. In parallel, human functional magnetic resonance imaging data show that a posterior hypothalamic-to-dlPAG pathway increased activity during exposure to aversive images, indicating that a similar pathway may possibly have a related role in humans. Our data identify the PMd-dlPAG circuit as a central node, controlling escape vigor elicited by both innate and conditioned threats.


Subject(s)
Behavior, Animal , Conditioning, Psychological , Escape Reaction , Fear , Hypothalamus, Posterior/physiology , Periaqueductal Gray/physiology , Adult , Animals , Brain Mapping , Cholecystokinin/genetics , Cholecystokinin/metabolism , Female , Humans , Hypothalamus, Posterior/diagnostic imaging , Hypothalamus, Posterior/metabolism , Magnetic Resonance Imaging , Male , Mice, Inbred C57BL , Mice, Transgenic , Neural Pathways/physiology , Optogenetics , Periaqueductal Gray/diagnostic imaging , Periaqueductal Gray/metabolism , Photic Stimulation , Rats, Long-Evans , Time Factors , Video Recording , Visual Perception , Young Adult
6.
Elife ; 102021 05 06.
Article in English | MEDLINE | ID: mdl-33955356

ABSTRACT

Animals must balance needs to approach threats for risk assessment and to avoid danger. The dorsal periaqueductal gray (dPAG) controls defensive behaviors, but it is unknown how it represents states associated with threat approach and avoidance. We identified a dPAG threatavoidance ensemble in mice that showed higher activity farther from threats such as the open arms of the elevated plus maze and a predator. These cells were also more active during threat avoidance behaviors such as escape and freezing, even though these behaviors have antagonistic motor output. Conversely, the threat approach ensemble was more active during risk assessment behaviors and near threats. Furthermore, unsupervised methods showed that avoidance/approach states were encoded with shared activity patterns across threats. Lastly, the relative number of cells in each ensemble predicted threat avoidance across mice. Thus, dPAG ensembles dynamically encode threat approach and avoidance states, providing a flexible mechanism to balance risk assessment and danger avoidance.


Subject(s)
Avoidance Learning , Periaqueductal Gray/physiology , Animals , Elevated Plus Maze Test , Male , Mice , Mice, Inbred C57BL
7.
Neuron ; 109(11): 1848-1860.e8, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33861942

ABSTRACT

Naturalistic escape requires versatile context-specific flight with rapid evaluation of local geometry to identify and use efficient escape routes. It is unknown how spatial navigation and escape circuits are recruited to produce context-specific flight. Using mice, we show that activity in cholecystokinin-expressing hypothalamic dorsal premammillary nucleus (PMd-cck) cells is sufficient and necessary for context-specific escape that adapts to each environment's layout. In contrast, numerous other nuclei implicated in flight only induced stereotyped panic-related escape. We reasoned the dorsal premammillary nucleus (PMd) can induce context-specific escape because it projects to escape and spatial navigation nuclei. Indeed, activity in PMd-cck projections to thalamic spatial navigation circuits is necessary for context-specific escape induced by moderate threats but not panic-related stereotyped escape caused by perceived asphyxiation. Conversely, the PMd projection to the escape-inducing dorsal periaqueductal gray projection is necessary for all tested escapes. Thus, PMd-cck cells control versatile flight, engaging spatial navigation and escape circuits.


Subject(s)
Escape Reaction , Hypothalamus, Posterior/physiology , Periaqueductal Gray/physiology , Spatial Navigation , Thalamus/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Neural Pathways/physiology , Rats , Rats, Long-Evans
8.
J Neurosci ; 41(25): 5399-5420, 2021 06 23.
Article in English | MEDLINE | ID: mdl-33883203

ABSTRACT

The brainstem dorsal periaqueductal gray (dPAG) has been widely recognized as being a vital node orchestrating the responses to innate threats. Intriguingly, recent evidence also shows that the dPAG mediates defensive responses to fear conditioned contexts. However, it is unknown whether the dPAG displays independent or shared patterns of activation during exposure to innate and conditioned threats. It is also unclear how dPAG ensembles encode and predict diverse defensive behaviors. To address this question, we used miniaturized microscopes to obtain recordings of the same dPAG ensembles during exposure to a live predator and a fear conditioned context in male mice. dPAG ensembles encoded not only distance to threat, but also relevant features, such as predator speed and angular offset between mouse and threat. Furthermore, dPAG cells accurately encoded numerous defensive behaviors, including freezing, stretch-attend postures, and escape. Encoding of behaviors and of distance to threat occurred independently in dPAG cells. dPAG cells also displayed a shared representation to encode these behaviors and distance to threat across innate and conditioned threats. Last, we also show that escape could be predicted by dPAG activity several seconds in advance. Thus, dPAG activity dynamically tracks key kinematic and behavioral variables during exposure to threats, and exhibits similar patterns of activation during defensive behaviors elicited by innate or conditioned threats. These data indicate that a common pathway may be recruited by the dPAG during exposure to a wide variety of threat modalities.SIGNIFICANCE STATEMENT The dorsal periaqueductal gray (dPAG) is critical to generate defensive behaviors during encounters with threats of multiple modalities. Here we use longitudinal calcium transient recordings of dPAG ensembles in freely moving mice to show that this region uses shared patterns of activity to represent distance to an innate threat (a live predator) and a conditioned threat (a shock grid). We also show that dPAG neural activity can predict diverse defensive behaviors. These data indicate the dPAG uses conserved population-level activity patterns to encode and coordinate defensive behaviors during exposure to both innate and conditioned threats.


Subject(s)
Behavior, Animal/physiology , Fear/physiology , Periaqueductal Gray/physiology , Animals , Male , Mice , Mice, Inbred C57BL
9.
Nat Commun ; 11(1): 6378, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311503

ABSTRACT

Homeotherms maintain a stable internal body temperature despite changing environments. During energy deficiency, some species can cease to defend their body temperature and enter a hypothermic and hypometabolic state known as torpor. Recent advances have revealed the medial preoptic area (MPA) as a key site for the regulation of torpor in mice. The MPA is estrogen-sensitive and estrogens also have potent effects on both temperature and metabolism. Here, we demonstrate that estrogen-sensitive neurons in the MPA can coordinate hypothermia and hypometabolism in mice. Selectively activating estrogen-sensitive MPA neurons was sufficient to drive a coordinated depression of metabolic rate and body temperature similar to torpor, as measured by body temperature, physical activity, indirect calorimetry, heart rate, and brain activity. Inducing torpor with a prolonged fast revealed larger and more variable calcium transients from estrogen-sensitive MPA neurons during bouts of hypothermia. Finally, whereas selective ablation of estrogen-sensitive MPA neurons demonstrated that these neurons are required for the full expression of fasting-induced torpor in both female and male mice, their effects on thermoregulation and torpor bout initiation exhibit differences across sex. Together, these findings suggest a role for estrogen-sensitive MPA neurons in directing the thermoregulatory and metabolic responses to energy deficiency.


Subject(s)
Body Temperature/physiology , Estrogens/metabolism , Neurons/physiology , Preoptic Area/metabolism , Torpor/physiology , Animals , Body Temperature/genetics , Body Temperature Regulation/physiology , Energy Metabolism/physiology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Fasting , Female , Hypothermia/genetics , Hypothermia/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
10.
J Neurosci ; 40(43): 8329-8342, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32958567

ABSTRACT

Hippocampal CA1 place cell spatial maps are known to alter their firing properties in response to contextual fear conditioning, a process called "remapping." In the present study, we use chronic calcium imaging to examine remapping during fear retrieval and extinction of an inhibitory avoidance task in mice of both sexes over an extended period of time and with thousands of neurons. We demonstrate that hippocampal ensembles encode space at a finer scale following fear memory acquisition. This effect is strongest near the shock grid. We also characterize the long-term effects of shock on place cell ensemble stability, demonstrating that shock delivery induces several days of high fear and low between-session place field stability, followed by a new, stable spatial representation that appears after fear extinction. Finally, we identify a novel group of CA1 neurons that robustly encode freeze behavior independently from spatial location. Thus, following fear acquisition, hippocampal CA1 place cells sharpen their spatial tuning and dynamically change spatial encoding stability throughout fear learning and extinction.SIGNIFICANCE STATEMENT The hippocampus contains place cells that encode an animal's location. This spatial code updates, or remaps, in response to environmental change. It is known that contextual fear can induce such remapping; in the present study, we use chronic calcium imaging to examine inhibitory avoidance-induced remapping over an extended period of time and with thousands of neurons and demonstrate that hippocampal ensembles encode space at a finer scale following electric shock, an effect which is enhanced by threat proximity. We also identify a novel group of freeze behavior-activated neurons. These results suggest that, more than merely shuffling their spatial code following threat exposure, place cells enhance their spatial coding with the possible benefit of improved threat localization.


Subject(s)
Extinction, Psychological/physiology , Fear/physiology , Hippocampus/physiology , Animals , Avoidance Learning , Behavior, Animal/physiology , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Calcium Signaling , Female , Hippocampus/cytology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...