Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 225(7): 1215-1226, 2022 04 01.
Article in English | MEDLINE | ID: mdl-32778875

ABSTRACT

BACKGROUND: Since the World Health Organization recommended single low-dose (0.25 mg/kg) primaquine (PQ) in combination with artemisinin-based combination therapies (ACTs) in areas of low transmission or artemisinin-resistant Plasmodium falciparum, several single-site studies have been conducted to assess efficacy. METHODS: An individual patient meta-analysis to assess gametocytocidal and transmission-blocking efficacy of PQ in combination with different ACTs was conducted. Random effects logistic regression was used to quantify PQ effect on (1) gametocyte carriage in the first 2 weeks post treatment; and (2) the probability of infecting at least 1 mosquito or of a mosquito becoming infected. RESULTS: In 2574 participants from 14 studies, PQ reduced PCR-determined gametocyte carriage on days 7 and 14, most apparently in patients presenting with gametocytemia on day 0 (odds ratio [OR], 0.22; 95% confidence interval [CI], .17-.28 and OR, 0.12; 95% CI, .08-.16, respectively). Rate of decline in gametocyte carriage was faster when PQ was combined with artemether-lumefantrine (AL) compared to dihydroartemisinin-piperaquine (DP) (P = .010 for day 7). Addition of 0.25 mg/kg PQ was associated with near complete prevention of transmission to mosquitoes. CONCLUSIONS: Transmission blocking is achieved with 0.25 mg/kg PQ. Gametocyte persistence and infectivity are lower when PQ is combined with AL compared to DP.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Animals , Artemether/pharmacology , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemisinins/pharmacology , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum , Primaquine
2.
mBio ; 10(5)2019 10 08.
Article in English | MEDLINE | ID: mdl-31594821

ABSTRACT

Many pathogens evolve extensive genetic variation in virulence proteins as a strategy to evade host immunity. This poses a significant challenge for the host to develop broadly neutralizing antibodies. In Plasmodium falciparum, we show that a mechanism to circumvent this challenge is to elicit antibodies to cryptic epitopes that are not under immune pressure. We previously discovered that antibodies to the Plasmodium vivax invasion protein, PvDBP, cross-react with P. falciparum VAR2CSA, a distantly related virulence factor that mediates placental malaria. Here, we describe the molecular mechanism underlying this cross-species immunity. We identified an epitope in subdomain 1 (SD1) within the Duffy binding-like (DBL) domain of PvDBP that gives rise to cross-reactive antibodies to VAR2CSA and show that human antibodies affinity purified against a synthetic SD1 peptide block parasite adhesion to chondroitin sulfate A (CSA) in vitro The epitope in SD1 is subdominant and highly conserved in PvDBP, and in turn, SD1 antibodies target cryptic epitopes in P. falciparum VAR2CSA. The epitopes in VAR2CSA recognized by vivax-derived SD1 antibodies (of human and mouse origin) are distinct from those recognized by VAR2CSA immune serum. We mapped two peptides in the DBL5ε domain of VAR2CSA that are recognized by SD1 antibodies. Both peptides map to regions outside the immunodominant sites, and antibodies to these peptides are not elicited following immunization with VAR2CSA or natural infection with P. falciparum in pregnancy, consistent with the cryptic nature of these target epitopes.IMPORTANCE In this work, we describe a molecular mechanism of heterologous immunity between two distant species of Plasmodium Our results suggest a mechanism that subverts the classic parasite strategy of presenting highly polymorphic epitopes in surface antigens to evade immunity to that parasite. This alternative immune pathway can be exploited to protect pregnant women from falciparum placental malaria by designing vaccines to cryptic epitopes that elicit broadly inhibitory antibodies against variant parasite strains.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Epitopes/immunology , Immunity, Heterologous , Plasmodium falciparum/immunology , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Receptors, Cell Surface/immunology , Animals , Brazil , Cell Adhesion , Chondroitin Sulfates/metabolism , Colombia , Cross Reactions , Epitope Mapping , Humans , Malaria, Falciparum/immunology , Malaria, Vivax/immunology , Mice , Uganda , Virulence Factors/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...