Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Evol ; 8(2): veac064, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35996592

ABSTRACT

The emergence and global dissemination of Severe Acute Respiratory Syndrome virus 2 (SARS-CoV-2) variants of concern (VOCs) have been described as the main factor driving the Coronavirus Disease 2019 pandemic. In Brazil, the Gamma variant dominated the epidemiological scenario during the first period of 2021. Many Brazilian regions detected the Delta variant after its first description and documented its spread. To monitor the introduction and spread of VOC Delta, we performed Polymerase Chain Reaction (PCR) genotyping and genome sequencing in ten regional sentinel units from June to October 2021 in the State of Minas Gerais (MG). We documented the introduction and spread of Delta, comprising 70 per cent of the cases 8 weeks later. Comparing the viral loads of the Gamma and Delta dominance periods, we provide additional evidence that the latter is more transmissible. The spread and dominance of Delta did not culminate in the increase in cases and deaths, suggesting that the vaccination may have restrained the epidemic growth. Analysis of 224 novel Delta genomes revealed that Rio de Janeiro state was the primary source for disseminating this variant in the state of MG. We present the establishment of Delta, providing evidence of its enhanced transmissibility and showing that this variant shift did not aggravate the epidemiological scenario in a high immunity setting.

2.
PLoS Negl Trop Dis ; 13(2): e0007103, 2019 02.
Article in English | MEDLINE | ID: mdl-30726203

ABSTRACT

Trypanosoma cruzi, the etiological agent of Chagas' disease, affects 8 million people predominantly living in socioeconomic underdeveloped areas. T. cruzi trypomastigotes (Ty), the classical infective stage, interact with the extracellular matrix (ECM), an obligatory step before invasion of almost all mammalian cells in different tissues. Here we have characterized the proteome and phosphoproteome of T. cruzi trypomastigotes upon interaction with ECM (MTy) and the data are available via ProteomeXchange with identifier PXD010970. Proteins involved with metabolic processes (such as the glycolytic pathway), kinases, flagellum and microtubule related proteins, transport-associated proteins and RNA/DNA binding elements are highly represented in the pool of proteins modified by phosphorylation. Further, important metabolic switches triggered by this interaction with ECM were indicated by decreases in the phosphorylation of hexokinase, phosphofructokinase, fructose-2,6-bisphosphatase, phosphoglucomutase, phosphoglycerate kinase in MTy. Concomitantly, a decrease in the pyruvate and lactate and an increase of glucose and succinate contents were detected by GC-MS. These observations led us to focus on the changes in the glycolytic pathway upon binding of the parasite to the ECM. Inhibition of hexokinase, pyruvate kinase and lactate dehydrogenase activities in MTy were observed and this correlated with the phosphorylation levels of the respective enzymes. Putative kinases involved in protein phosphorylation altered upon parasite incubation with ECM were suggested by in silico analysis. Taken together, our results show that in addition to cytoskeletal changes and protease activation, a reprogramming of the trypomastigote metabolism is triggered by the interaction of the parasite with the ECM prior to cell invasion and differentiation into amastigotes, the multiplicative intracellular stage of T. cruzi in the vertebrate host.


Subject(s)
Extracellular Matrix/parasitology , Phosphoproteins/metabolism , Proteome/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Animals , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation/physiology , Host-Parasite Interactions , Humans , Protozoan Proteins/genetics
3.
Clin Vaccine Immunol ; 22(11): 1187-96, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26376929

ABSTRACT

The serodiagnosis of human tegumentary leishmaniasis (TL) presents some problems, such as the low level of antileishmanial antibodies found in most of the patients, as well as the cross-reactivity in subjects infected by other trypanosomatids. In the present study, an immunoproteomic approach was performed aimed at identification of antigens in total extracts of stationary-phase promastigote and amastigote-like forms of Leishmania (Viannia) braziliensis using sera from TL patients. With the purpose of reducing the cross-reactivity of the identified proteins, spots recognized by sera from TL patients, as well as those recognized by antibodies present in sera from noninfected patients living in areas where TL is endemic and sera from Chagas disease patients, were discarded. Two Leishmania hypothetical proteins and 18 proteins with known functions were identified as antigenic. The study was extended with some of them to validate the results of the immunoscreening. The coding regions of five of the characterized antigens (enolase, tryparedoxin peroxidase, eukaryotic initiation factor 5a, ß-tubulin, and one of the hypothetical proteins) were cloned in a prokaryotic expression vector, and the corresponding recombinant proteins were purified and evaluated for the serodiagnosis of TL. The antigens presented sensitivity and specificity values ranging from 95.4 to 100% and 82.5 to 100%, respectively. As a comparative antigen, a preparation of Leishmania extract showed sensitivity and specificity values of 65.1 and 57.5%, respectively. The present study has enabled the identification of proteins able to be employed for the serodiagnosis of TL.


Subject(s)
Bacterial Proteins/immunology , Leishmania braziliensis/immunology , Leishmaniasis, Cutaneous/diagnosis , Adult , Aged , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Cross Reactions , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Leishmania braziliensis/chemistry , Leishmania braziliensis/genetics , Leishmaniasis, Cutaneous/immunology , Male , Middle Aged , Peroxidases/genetics , Proteomics/methods , Protozoan Proteins/genetics , Recombinant Proteins/immunology , Sensitivity and Specificity , Serologic Tests/methods
4.
PLoS Negl Trop Dis ; 8(4): e2764, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24699271

ABSTRACT

BACKGROUND: The present study analyzed whether or not the in vitro cultivation for long periods of time of pre-isolated Leishmania amazonensis from lesions of chronically infected BALB/c mice was able to interfere in the parasites' infectivity using in vivo and in vitro experiments. In addition, the proteins that presented a significant decrease or increase in their protein expression content were identified applying a proteomic approach. METHODOLOGY/PRINCIPAL FINDINGS: Parasites were cultured in vitro for 150 days. Aliquots were collected on the day 0 of culture (R0), as well as after ten (R10; 50 days of culture), twenty (R20; 100 days of culture), and thirty (R30; 150 days of culture) passages, and were used to analyze the parasites' in vitro and in vivo infectivity, as well as to perform the proteomic approach. Approximately 837, 967, 935, and 872 spots were found in 2-DE gels prepared from R0, R10, R20, and R30 samples, respectively. A total of 37 spots presented a significant decrease in their intensity of expression, whereas a significant increase in protein content during cultivation could be observed for 19 proteins (both cases >2.0 folds). Some of these identified proteins can be described, such as diagnosis and/or vaccine candidates, while others are involved in the infectivity of Leishmania. It is interesting to note that six proteins, considered hypothetical in Leishmania, showed a significant decrease in their expression and were also identified. CONCLUSIONS/SIGNIFICANCE: The present study contributes to the understanding that the cultivation of parasites over long periods of time may well be related to the possible loss of infectivity of L. amazonensis. The identified proteins that presented a significant decrease in their expression during cultivation, including the hypothetical, may also be related to this loss of parasites' infectivity, and applied in future studies, including vaccine candidates and/or immunotherapeutic targets against leishmaniasis.


Subject(s)
Gene Expression Profiling , Leishmania mexicana/chemistry , Leishmania mexicana/pathogenicity , Proteome/analysis , Protozoan Proteins/analysis , Virulence Factors/analysis , Adaptation, Biological , Animals , Electrophoresis, Gel, Two-Dimensional , Female , Mice , Mice, Inbred BALB C , Protozoan Proteins/genetics , Serial Passage , Virulence , Virulence Factors/genetics
6.
PLoS Negl Trop Dis ; 7(3): e2148, 2013.
Article in English | MEDLINE | ID: mdl-23573301

ABSTRACT

BACKGROUND: The present study aimed to evaluate a hypothetical Leishmania amastigote-specific protein (LiHyp1), previously identified by an immunoproteomic approach performed in Leishmania infantum, which showed homology to the super-oxygenase gene family, attempting to select a new candidate antigen for specific serodiagnosis, as well as to compose a vaccine against VL. METHODOLOGY/PRINCIPAL FINDINGS: The LiHyp1 DNA sequence was cloned; the recombinant protein (rLiHyp1) was purified and evaluated for its antigenicity and immunogenicity. The rLiHyp1 protein was recognized by antibodies from sera of asymptomatic and symptomatic animals with canine visceral leishmaniasis (CVL), but presented no cross-reactivity with sera of dogs vaccinated with Leish-Tec, a Brazilian commercial vaccine; with Chagas' disease or healthy animals. In addition, the immunogenicity and protective efficacy of rLiHyp1 plus saponin was evaluated in BALB/c mice challenged subcutaneously with virulent L. infantum promastigotes. rLiHyp1 plus saponin vaccinated mice showed a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with the recombinant protein. Immunized and infected mice, as compared to the control groups (saline and saponin), showed significant reductions in the number of parasites found in the liver, spleen, bone marrow, and in the paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, produced mainly by CD4 T cells. In these mice, a decrease in the parasite-mediated IL-4 and IL-10 response could also be observed. CONCLUSIONS/SIGNIFICANCE: The present study showed that this Leishmania oxygenase amastigote-specific protein can be used for a more sensitive and specific serodiagnosis of asymptomatic and symptomatic CVL and, when combined with a Th1-type adjuvant, can also be employ as a candidate antigen to develop vaccines against VL.


Subject(s)
Antigens, Protozoan/immunology , Leishmania infantum/immunology , Leishmaniasis, Visceral/prevention & control , Oxygenases/immunology , Vaccines, Synthetic/immunology , Animal Structures/parasitology , Animals , Antigens, Protozoan/genetics , Antigens, Protozoan/isolation & purification , CD4-Positive T-Lymphocytes/immunology , Cloning, Molecular , Cross Reactions , Disease Models, Animal , Dog Diseases/immunology , Dog Diseases/parasitology , Dogs , Immunoassay/methods , Interferon-gamma/metabolism , Interleukin-12/metabolism , Leishmaniasis/immunology , Leishmaniasis/prevention & control , Leishmaniasis/veterinary , Leishmaniasis, Visceral/immunology , Mice , Mice, Inbred BALB C , Oxygenases/genetics , Oxygenases/isolation & purification , Parasite Load , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...