Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 14(1): 96, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33546761

ABSTRACT

BACKGROUND: Belonging to the anopluran family Echinophthiriidae, Echinophthirius horridus, the seal louse, has been reported to parasitise a broad range of representatives of phocid seals. So far, only a few studies have focused on the vector function of echinophthiriid lice, and knowledge about their role in pathogen transmission is still scarce. The current study aims to investigate the possible vector role of E. horridus parasitising seals in the Dutch Wadden Sea. METHODS: E. horridus seal lice were collected from 54 harbour seals (Phoca vitulina) and one grey seal (Halichoerus grypus) during their rehabilitation period at the Sealcentre Pieterburen, The Netherlands. DNA was extracted from pooled seal lice of individual seals for molecular detection of the seal heartworm Acanthocheilonema spirocauda, the rickettsial intracellular bacterium Anaplasma phagocytophilum, and the cell wall-less bacteria Mycoplasma spp. using PCR assays. RESULTS: Seal lice from 35% of the harbour seals (19/54) and from the grey seal proved positive for A. spirocauda. The seal heartworm was molecularly characterised and phylogenetically analysed (rDNA, cox1). A nested PCR was developed for the cox1 gene to detect A. spirocauda stages in seal lice. A. phagocytophilum and a Mycoplasma species previously identified from a patient with disseminated 'seal finger' mycoplasmosis were detected for the first time, to our knowledge, in seal lice. CONCLUSIONS: Our findings support the potential vector role of seal lice in the transmission of A. spirocauda and reveal new insights into the spectrum of pathogens occurring in seal lice. Studies on vector competence of E. horridus, especially for bacterial pathogens, are essentially needed in the future as these pathogens might have detrimental effects on the health of seal populations. Furthermore, studies on the vector role of different echinophthiriid species infecting a wide range of pinniped hosts should be conducted to extend the knowledge of vector-borne pathogens.


Subject(s)
Anoplura/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Infections/transmission , Disease Vectors , Phoca/parasitology , Animals , Anoplura/genetics , Bacteria/classification , Bacteria/pathogenicity , Female , Male , Netherlands , Oceans and Seas , Phylogeny
2.
Parasit Vectors ; 8: 607, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26610335

ABSTRACT

BACKGROUND: Polymorphonuclear neutrophil (PMN) and eosinophil extracellular trap (ETs) formation has recently been described as an important host effector mechanism against invading pathogens. So far, scarce evidence on metazoan-triggered ET formation has been published. We here describe for the first time Haemonchus contortus-triggered ETs being released by bovine PMN and ovine eosinophils in response to ensheathed and exsheathed third stage larvae (L3). METHODS: The visualization of ETs was achieved by SEM analysis. The identification of classical ETs components was performed via fluorescence microscopy analysis. The effect of larval exsheathment and parasite integrity on ET formation was evaluated via Pico Green®- fluorescence intensities. ETs formation under acidic conditions was assessed by using media of different pH ranges. Parasite entrapment was evaluated microscopically after co-culture of PMN and L3. ET inhibition experiments were performed using inhibitors against NADPH oxidase, NE and MPO. Eosinophil-derived ETs were estimated via fluorescence microscopy analysis. RESULTS: L3 significantly induced PMN-mediated ETs and significant parasite entrapment through ETs structures was rapidly observed after 60 min of PMN and L3 co-culture. Co-localization studies of PMN-derived extracellular DNA with histones (H3), neutrophil elastase (NE) and myeloperoxidase (MPO) in parasite-entrapping structures confirmed the classical characteristics of ETs. Haemonchus contortus-triggered ETs were significantly diminished by NADPH oxidase-, NE- and MPO-inhibition. Interestingly, different forms of ETs, i.e. aggregated (aggETs), spread (sprETs) and diffused (diffETs) ETs, were induced by L3. AggETs and sprETs firmly ensnared larvae in a time dependent manner. Significantly stronger aggETs reactions were detected upon exposure of PMN to ensheathed larvae than to exsheathed ones. Low pH conditions as are present in the abomasum did not block ETosis and led to a moderate decrease of ETs. Eosinophil-ETs were identified extruding DNA via fluorescence staining. CONCLUSION: We postulate that ETs may limit the establishment of H. contortus within the definitive host by immobilizing the larvae and hampering them from migrating into the site of infection. Consequently, H. contortus-mediated ET formation might have an impact on the outcome of the disease. Finally, besides PMN-triggered ETs, we here present first indications of ETs being released by eosinophils upon H. contortus L3 exposure.


Subject(s)
Extracellular Traps/parasitology , Haemonchiasis/veterinary , Haemonchus/immunology , Immunity, Innate , Neutrophils/parasitology , Animals , Cattle , Eosinophils/immunology , Eosinophils/parasitology , Female , Haemonchiasis/immunology , Larva , Leukocytes/immunology , Leukocytes/parasitology , Male , NADPH Oxidases/metabolism , Neutrophils/immunology , Peroxidase/metabolism , Sheep
3.
Dev Comp Immunol ; 50(2): 106-15, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25681075

ABSTRACT

Extracellular traps (ETs) are composed of nuclear DNA as backbone adorned with histones, cytoplasmic antimicrobial peptides/proteins which are released from a range of vertebrate and invertebrate host immune cells in response to several invading pathogens. Until now this ancient novel innate defence mechanism has not been demonstrated in any marine mammal. Interactions of harbour seal (Phoca vitulina)-PMN and -monocytes with viable tachyzoites of Toxoplasma gondii were investigated in this respect in vitro. For the demonstration and quantification of harbour seal PMN- and monocyte-derived ETs, extracellular DNA was stained with Sytox Orange. Fluorescence assays as well as scanning electron microscopy (SEM) analyses demonstrated PMN- and monocyte-promoted ET formation rapidly being induced upon contact with T. gondii-tachyzoites. The co-localisation of extracellular DNA decorated with histones (H3), neutrophil elastase (NE) and myeloperoxidase (MPO) in parasite entrapping structures confirmed the classical characteristics of PMN- and monocyte-promoted ETs. Exposure of harbour seal PMN and monocytes to viable tachyzoites resulted in a significant induction of ETs when compared to negative controls. Harbour seal-ETs were efficiently abolished by DNase I treatment and were reduced after PMN and monocytes pre-incubation with the NADPH oxidase inhibitor diphenilane iodondium. Tachyzoites of T. gondii were firmly entrapped and immobilised within harbour seal-ET structures. To our best knowledge, we here report for the first time on T. gondii-induced ET formation in harbour seal-PMN and -monocytes. Our results strongly indicate that PMN- and monocyte-triggered ETs represent a relevant and ancient conserved effector mechanism of the pinniped innate immune system as reaction against the pathogenic protozoon T. gondii and probably against other foreign pathogens occurring in the ocean environment.


Subject(s)
Extracellular Traps/immunology , Monocytes/immunology , Neutrophils/immunology , Phoca/immunology , Toxoplasma/immunology , Animals , Deoxyribonuclease I/metabolism , Immunity, Innate/immunology , Leukocyte Elastase/immunology , Microscopy, Electron, Scanning , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/immunology , Peroxidase/immunology , Phoca/parasitology
4.
J Anat ; 220(2): 179-85, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22077432

ABSTRACT

Changes in body weight due to changes in food intake are reflected by corresponding changes in the cardiac phenotype. Despite a growing body of literature on cardiac hypertrophy associated with obesity, little is known on the atrophic remodelling of the heart associated with calorie restriction. We hypothesized that, besides the cardiomyocyte compartment, capillaries and nerve fibres are involved in the atrophic process. C57Bl6 mice were kept on normal diet (control group) or at a calorie-restricted diet for 3 or 7 days (n = 5 each). At the end of the protocol, mice were killed and the hearts were processed for light and electron microscopic stereological analysis of cardiomyocytes, capillaries and nerve fibres. Body, heart and left ventricular weight were significantly reduced in the calorie-restricted animals at 7 days. Most morphological parameters were not significantly different at 3 days compared with the control group, but at 7 days most of them were significantly reduced. Specifically, the total length of capillaries, the volume of cardiomyocytes as well as their subcellular compartments and the interstitium were proportionally reduced during caloric restriction. No differences were observed in the total length or the mean diameter of axons between the cardiomyocytes. Our data indicate that diet-induced left ventricular atrophy leads to a proportional atrophic process of cardiomyocytes and capillaries. The innervation is not involved in the atrophic process.


Subject(s)
Caloric Restriction/adverse effects , Malnutrition/pathology , Myocytes, Cardiac/pathology , Ventricular Remodeling/physiology , Analysis of Variance , Animals , Atrophy , Capillaries/pathology , Heart Ventricles/innervation , Heart Ventricles/pathology , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron , Myocardium/cytology , Nerve Fibers/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...