Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Eur Heart J Imaging Methods Pract ; 2(1): qyad047, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39045176

ABSTRACT

Aims: To evaluate whether the characteristics of patients, operators, and image quality could explain the accuracy of heart failure (HF) diagnostics by general practitioners (GPs) using handheld ultrasound devices (HUDs) with automatic decision-support software and telemedical support. Methods and results: Patients referred to an outpatient cardiac clinic due to symptoms indicating HF were examined by one of five GPs after dedicated training. In total, 166 patients were included [median (inter-quartile range) age 73 (63-78) years; mean ± standard deviation ejection fraction 53 ± 10%]. The GPs considered whether the patients had HF in four diagnostic steps: (i) clinical examination, (ii) adding focused cardiac HUD examination, (iii) adding automatic decision-support software measuring mitral annular plane systolic excursion (autoMAPSE) and ejection fraction (autoEF), and (iv) adding telemedical support. Overall, the characteristics of patients, operators, and image quality explained little of the diagnostic accuracy. Except for atrial fibrillation [lower accuracy for HUD alone and after adding autoEF (P < 0.05)], no patient characteristics influenced the accuracy. Some differences between operators were found after adding autoMAPSE (P < 0.05). Acquisition errors of the four-chamber view and a poor visualization of the mitral plane were associated with reduced accuracy after telemedical support (P < 0.05). Conclusion: The characteristics of patients, operators, and image quality explained just minor parts of the modest accuracy of GPs' HF diagnostics using HUDs with and without decision-support software. Atrial fibrillation and not well-standardized recordings challenged the diagnostic accuracy. However, the accuracy was only modest in well-recorded images, indicating a need for refinement of the technology.

2.
Ultrasound Med Biol ; 49(5): 1137-1144, 2023 05.
Article in English | MEDLINE | ID: mdl-36804210

ABSTRACT

Early and correct heart failure (HF) diagnosis is essential to improvement of patient care. We aimed to evaluate the clinical influence of handheld ultrasound device (HUD) examinations by general practitioners (GPs) in patients with suspected HF with or without the use of automatic measurement of left ventricular (LV) ejection fraction (autoEF), mitral annular plane systolic excursion (autoMAPSE) and telemedical support. Five GPs with limited ultrasound experience examined 166 patients with suspected HF (median interquartile range = 70 (63-78) y; mean ± SD EF = 53 ± 10%). They first performed a clinical examination. Second, they added an examination with HUD, automatic quantification tools and, finally, telemedical support by an external cardiologist. At all stages, the GPs considered whether the patients had HF. The final diagnosis was made by one of five cardiologists using medical history and clinical evaluation including a standard echocardiography. Compared with the cardiologists' decision, the GPs correctly classified 54% by clinical evaluation. The proportion increased to 71% after adding HUDs, and to 74 % after telemedical evaluation. Net reclassification improvement was highest for HUD with telemedicine. There was no significant benefit of the automatic tools (p ≥ 0.58). Addition of HUD and telemedicine improved the GPs' diagnostic precision in suspected HF. Automatic LV quantification added no benefit. Refined algorithms and more training may be needed before inexperienced users benefit from automatic quantification of cardiac function by HUDs.


Subject(s)
Heart Failure , Telemedicine , Humans , Ultrasonography , Echocardiography , Ventricular Function, Left , Heart Failure/diagnostic imaging , Stroke Volume
3.
BMJ Open ; 12(10): e063793, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229153

ABSTRACT

OBJECTIVES: To evaluate the feasibility and reliability of hand-held ultrasound (HUD) examinations with real-time automatic decision-making software for ejection fraction (autoEF) and mitral annular plane systolic excursion (autoMAPSE) by novices (general practitioners), intermediate users (registered cardiac nurses) and expert users (cardiologists), respectively, compared to reference echocardiography by cardiologists in an outpatient cohort with suspected heart failure (HF). DESIGN: Feasibility study of a diagnostic test. SETTING AND PARTICIPANTS: 166 patients with suspected HF underwent HUD examinations with autoEF and autoMAPSE measurements by five novices, three intermediate-skilled users and five experts. HUD results were compared with a reference echocardiography by experts. A blinded cardiologist scored all HUD recordings with automatic measurements as (1) discard, (2) accept, but adjust the measurement or (3) accept the measurement as it is. PRIMARY OUTCOME MEASURE: The feasibility of automatic decision-making software for quantification of left ventricular function. RESULTS: The users were able to run autoEF and autoMAPSE in most patients. The feasibility for obtaining accepted images (score of ≥2) with automatic measurements ranged from 50% to 91%. The feasibility was lowest for novices and highest for experts for both autoEF and autoMAPSE (p≤0.001). Large coefficients of variation and wide coefficients of repeatability indicate moderate agreement. The corresponding intraclass correlations (ICC) were moderate to good (ICC 0.51-0.85) for intra-rater and poor (ICC 0.35-0.51) for inter-rater analyses. The findings of modest to poor agreement and reliability were not explained by the experience of the users alone. CONCLUSION: Novices, intermediate and expert users were able to record four-chamber views for automatic assessment of autoEF and autoMAPSE using HUD devices. The modest feasibility, agreement and reliability suggest this should not be implemented into clinical practice without further refinement and clinical evaluation. TRIAL REGISTRATION NUMBER: NCT03547076.


Subject(s)
Cardiologists , General Practitioners , Heart Failure , Diagnostic Tests, Routine , Feasibility Studies , Heart Failure/diagnostic imaging , Humans , Reproducibility of Results , Ventricular Function, Left
4.
J Ultrasound Med ; 40(2): 341-350, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32710577

ABSTRACT

OBJECTIVES: Handheld ultrasound devices (HUDs) have previously been limited to grayscale imaging without options for left ventricle (LV) quantification. We aimed to study the feasibility and reliability of automatic measurements of mitral annular plane systolic excursion (MAPSE) by HUDs. METHODS: An algorithm that automatically measured MAPSE from live grayscale recordings was implemented in a HUD. Twenty patients at a university hospital were examined by either a cardiologist or a sonographer. Standard echocardiography using a high-end scanner was performed. The apical 4-chamber view was recorded 4 times by both echocardiography and the HUD. MAPSE was measured by M-mode and color tissue Doppler (cTD) during echocardiography and automatically by the HUD. RESULTS: The automatic method underestimated mean MAPSE ± SD versus M-mode (9.6 ± 2.2 versus 10.9 ± 2.6 mm; difference, 1.2 ± 1.4 mm, P < .005). The difference between the automatic and cTD measurements was not significant (0.8 ± 1.8 mm; P = .073). The intraclass correlation coefficients (ICCs) between automatic and M-mode measurements was 0.85, and 0.81 for cTD measurements. There was good agreement between the methods, and the intra- and inter-rater ICCs were excellent for all methods (≥0.86). CONCLUSIONS: In this novel study evaluating automatic quantification of LV longitudinal function by HUD, we showed the high feasibility and reliability of the method. Compared to M-mode imaging, the automatic method underestimated MAPSE by 8% to 10%, but the difference with cTD imaging was nonsignificant. We conclude that this study's method for automatic quantitative assessment of LV function can be integrated in HUDs.


Subject(s)
Ventricular Dysfunction, Left , Feasibility Studies , Humans , Mitral Valve/diagnostic imaging , Pilot Projects , Reproducibility of Results , Systole
SELECTION OF CITATIONS
SEARCH DETAIL