Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Trace Elem Res ; 199(10): 3737-3751, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33415581

ABSTRACT

Despite the important role of iron in cellular homeostasis, iron overload (IO) is associated with systemic and tissue deposits which damage several organs. In order to reduce the impact caused by IO, invasive diagnosis exams (e.g., biopsies) and minimally invasive methods were developed including computed tomography and magnetic resonance imaging. However, current diagnostic methods are still time-consuming and expensive. A cost-effective solution is using Fourier-transform infrared spectroscopy (FTIR) for real-time and molecular-sensitive biofluid analysis during conventional laboratory exams. In this study, we performed the first evaluation of the accuracy of FTIR for IO diagnosis. The study was performed by collecting FTIR spectra of plasma samples of five rats intravenously injected with iron-dextran and five control rats. We developed a classification model based on principal component analysis and supervised methods including J48, random forest, multilayer perceptron, and radial basis function network. We achieved 100% accuracy for the classification of the IO status and provided a list of possible biomolecules related to the vibrational modes detected. In this preliminary study, we give a first step towards real-time diagnosis for acute IO or intoxication. Furthermore, we have expanded the literature knowledge regarding the pathophysiological changes induced by iron overload.


Subject(s)
Iron Overload , Animals , Iron , Iron Overload/diagnosis , Iron-Dextran Complex , Principal Component Analysis , Rats , Spectroscopy, Fourier Transform Infrared
2.
Br J Pharmacol ; 177(5): 1119-1130, 2020 03.
Article in English | MEDLINE | ID: mdl-31705542

ABSTRACT

BACKGROUND AND PURPOSE: Damage to the vasculature caused by chronic iron-overload in both humans and animal models, is characterized by endothelial dysfunction and reduced compliance. In vitro, blockade of the angiotensin II AT1 receptors reversed functional vascular changes induced by chronic iron-overload. In this study, the effect of chronic AT1 receptor blockade on aorta stiffening was assessed in iron-overloaded rats. EXPERIMENTAL APPROACH: Male Wistar rats were treated for 15 days with saline as control group, iron dextran 200 mg·kg-1 ·day-1 , 5 days a week (iron-overload group), losartan (20 mg·kg-1 ·day-1 in drinking water), and iron dextran plus losartan. Mechanical properties of the aorta were assessed in vivo. In vitro, aortic geometry and biochemical composition were assessed with morphometric and histological methods. KEY RESULTS: Thoracoabdominal aortic pulse wave velocity (PWV) increased significantly, indicating a decrease in aortic compliance. Co-treatment with losartan prevented changes on PWV, ß-index, and elastic modulus in iron-overloaded rats. This iron-related increase in PWV was not related to changes in aortic geometry and wall stress. but to increased elastic modulus/wall stress ratio, suggesting that a change in the composition of the wall was responsible for the stiffness. Losartan treatment also ameliorated the increase in aorta collagen content of the iron-overload group, without affecting circulating iron or vascular deposits. CONCLUSIONS AND IMPLICATIONS: Losartan prevented the structural and functional indices of aortic stiffness in iron-overloaded rats, implying that inhibition of the renin-angiotensin system would limit the vascular remodelling in chronic iron-overload.


Subject(s)
Pulse Wave Analysis , Receptors, Angiotensin , Angiotensins , Animals , Blood Pressure , Iron , Losartan/pharmacology , Male , Rats , Rats, Wistar , Receptor, Angiotensin, Type 1
3.
Life Sci ; 233: 116702, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31356905

ABSTRACT

AIMS: We previously demonstrated that iron overload induces endothelial dysfunction and oxidative stress, which could increase the risk for atherosclerosis. However, the iron-related harmfulness under a genetic predisposition to atherosclerosis is still unclear. Here, we have tested the hypothesis that chronic iron overload may change vascular reactivity associated with worsening of the atherosclerotic process in apolipoprotein E knockout (apoE(-/-)) mice. MAIN METHODS: Serum and aortas of wild-type (WT) and apoE(-/-) mice injected with iron-dextran (IO, 10 mg/mouse/day, ip) or saline 5 times a week for 4 weeks, were used. KEY FINDINGS: Iron overload increased serum levels of iron and biomarkers of liver injury and oxidative stress, and iron deposition in the aorta in both lines, but only apoE(-/-) IO mice had intensified hypercholesterolemia and atherosclerosis. By scanning electron microscopy, the small endothelial structural damage caused by iron in WT was worsened in the apoE(-/-) group. However, endothelial dysfunction was found only in the apoE(-/-) IO group, identified by impaired relaxation to acetylcholine and hyperreactivity to phenylephrine associated with reduced nitric oxide modulation. Moreover, tiron and indomethacin attenuated reactivity to phenylephrine with greater magnitude in aortas of the apoE(-/-) IO group. Confirming, there were changes in the antioxidant (superoxide dismutase and catalase) activity, increased expression of cyclooxygenase-2 in the aorta and elevated levels of thromboxane A2 and prostacyclin metabolites in the urine of apoE(-/-) IO. SIGNIFICANCE: Our results showed that chronic iron overload intensifies the atherosclerotic process and induces endothelial dysfunction in atherosclerotic mice, probably due to the oxidative stress and the imbalance between the relaxing and contractile factors synthesized by the damaged endothelium.


Subject(s)
Apolipoproteins E/physiology , Atherosclerosis/pathology , Endothelium, Vascular/pathology , Hypercholesterolemia/pathology , Iron Overload/complications , Oxidative Stress , Acetylcholine/metabolism , Animals , Atherosclerosis/etiology , Atherosclerosis/metabolism , Endothelium, Vascular/metabolism , Female , Hypercholesterolemia/etiology , Hypercholesterolemia/metabolism , Iron/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Nitric Oxide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...